

Transport Requirements for a 5G Broadband Use Case

Vishwanath Ramamurthi Thomas Tan Shankar Venkatraman Verizon

Compliance with IEEE Standards Policies and Procedures

Subclause 5.2.1 of the *IEEE-SA Standards Board Bylaws* states, "While participating in IEEE standards development activities, all participants...shall act in accordance with all applicable laws (nation-based and international), the IEEE Code of Ethics, and with IEEE Standards policies and procedures."

The contributor acknowledges and accepts that this contribution is subject to

- The IEEE Standards copyright policy as stated in the IEEE-SA Standards Board Bylaws, section 7, <u>http://standards.ieee.org/develop/policies/bylaws/sect6-7.html#7</u>, and the IEEE-SA Standards Board Operations Manual, section 6.1, http://standards.ieee.org/develop/policies/opman/sect6.html
- The IEEE Standards patent policy as stated in the *IEEE-SA Standards Board Bylaws*, section 6, <u>http://standards.ieee.org/guides/bylaws/sect6-7.html#6</u>, and the *IEEE-SA Standards Board Operations Manual*, section 6.3, http://standards.ieee.org/develop/policies/opman/sect6.html

IEEE WG Project # 1914.1 Next Generation Fronthaul Interface

Jinri Huang, Email: huangjinri@chinamobile.com

Transport Requirements for a 5G Broadband Use Case						
Date: 2016-08-12						
Author(s):						
Name	Affiliation	Phone [optional]	Email [optional]			
Vishwanath Ramamurthi	Verizon		vishwa@VerizonWireless.com			
Thomas Tan	Verizon		Thomas.Tan@VerizonWireless.com			
Shankar Venkatraman	Verizon		Shankar.Venkatraman@VerizonWireless.com			

Verizon 5GTF Specifications Summary

Goal of Verizon 5GTF (5G Technical Forum)

Develop a common and extendable platform for Verizon's 28/39 GHz fixed wireless access deployment

Scope

The specifications facilitate early 5G deployments for Verizon's fixed wireless use case and requirements.

Promote interoperability among network and CPE/chipset vendors.

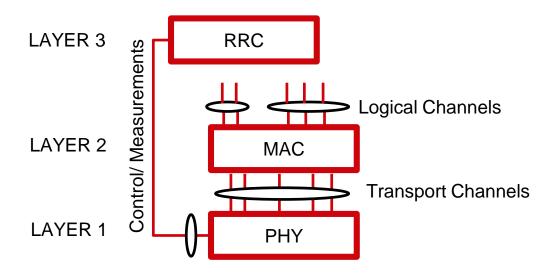
TS V5G.211 V0.1 (2018-03) Vertrand Specification Vertrand Specification Vertrand Specification Vertrand Specification (Release 1)

Format

Developed jointly by Verizon and ecosystem partners (Nokia, Ericsson, Samsung, Qualcomm, Intel, Cisco, and LG)

Website: <u>http://5gtf.org</u>

IEEE STANDARDS ASSOCIATION


5GTF: General Protocol Architecture

Radio Interface is composed of Layers 1, 2 and 3, and covers the interface between user equipment and the network

V5G.200 series describe the Layer 1 (Physical Layer)

V5G.300 series describe Layers 2 and 3 (MAC, RLC, PDCP, RRC)

V5G.401 describes the Stage 2 level overall network reference architecture, and Stage 3 level NAS specifications

5GTF: Key Air Interface Features

New RAT Numerology

Short subframe duration with reduced latency Utilize large bandwidth @ 28/39 GHz Flexibility for different scenarios & different frequency bands

Flexible Frame Structure

Dynamic UL/DL allocations to support various traffic conditions Flexible framework additional future use cases and scenarios

Advanced Beamforming

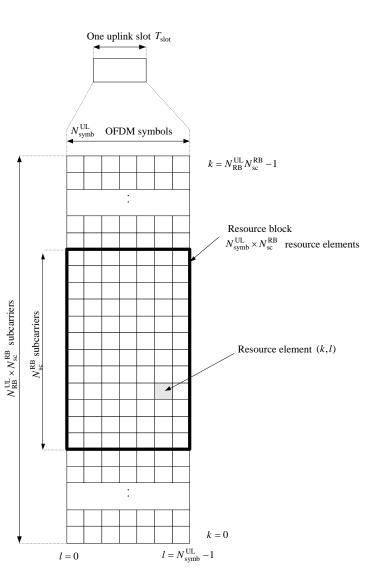
Improve coverage, throughput and densification of cells

Ensure a robust 5G system

Multi-site beamforming/switching

Fast initial acquisition and beamforming training

Physical Layer (L1) Outline


Technology Components	Details
Spectrum	28 GHz
Bandwidth	Component carrier BW = 100 MHz
Duplex	Dynamic TDD
Waveform	OFDM (DL/UL)
Subcarrier Spacing	75 KHz (5 x LTE)
MIMO	Up to 2 layers, MU-MIMO
Beamforming	Hybrid (Digital + Analog)
Modulation	Up to 64 QAM (DL/UL)
Channel Coding	LDPC
TTI length	0.2 ms (LTE / 5)
# of subcarriers	1200 per component carrier
Structure	Self contained frame structure

Numerology Details

Component Carrier BW	100 MHz		
Sampling rate	153.6 MHz		
FFT Size (N)	2048		
Subcarrier spacing (Δf)	75kHz		
Basic Sample Time Unit (Ts)	1/(75000x2048) sec		
Subframe duration	0.2 ms (30720 samples)		
OFDM symbols per subframe	14		
Symbol Duration	13.3 microsec (2048 samples)		
CP length	160 samples (1042 ns, symbol 0/7) 144 samples (940 ns, other symbols)		
Occupied Subcarriers	1200		
Radio Frame Duration	10 ms (50 subframes)		

Spectrum for 5G

Media Contact: Charlie Meisch (202) 418-2943 charles.meisch@fcc.gov

For Immediate Release

FCC TAKES STEPS TO FACILITATE MOBILE BROADBAND AND NEXT GENERATION WIRELESS TECHNOLOGIES IN SPECTRUM ABOVE 24 GHZ New rules will enable rapid development and deployment of next generation 5G technologies and services

WASHINGTON, July 14, 2016 – The FCC today adopted new rules for wireless broadband operations in frequencies above 24 GHz, making the United States the first country in the world to make this spectrum available for next generation wireless services. Building on the successful, flexible approach to spectrum policy that enabled the explosion of 4G (LTE), these rules set a strong foundation for the rapid advancement to next-generation 5G networks and technologies in the United States.

This high-frequency spectrum will support innovative new uses enabled by fiber-fast wireless speeds and extremely low latency. While 5G technologies are still under development, today's action by the Commission to put rules in place will provide vital clarity for business investment in this area.

These new rules open up nearly 11 GHz of high-frequency spectrum for flexible, mobile and fixed use wireless broadband – 3.85 GHz of licensed spectrum and 7 GHz of unlicensed spectrum. The rules adopted today creates a new Upper Microwave Flexible Use service in the 28 GHz (27.5-28.35 GHz), 37 GHz (37-38.6 GHz), and 39 GHz (38.6-40 GHz) bands, and a new unlicensed band at 64-71 GHz.

RAN Architecture Considerations

1. Flexible RAN Split Options (Central Unit CU and Remote Unit RU)

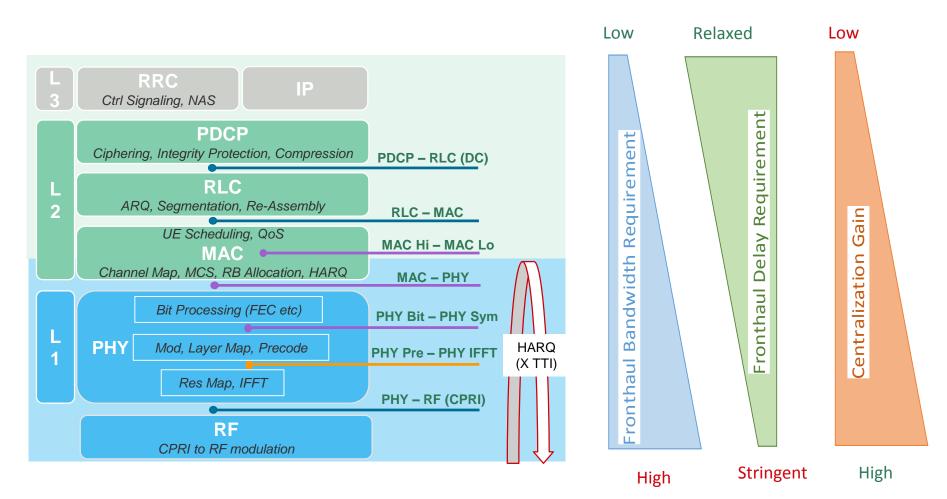
- Enables Centralization gains and cost efficient design
- Different RAN split options might be optimal for different deployment scenarios
- Allow different degrees of centralization for user and control plane

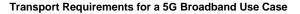
2. 5G BW and Latency Requirements

- 5G Radio with data rates of order of several Gbps per sector challenges FrontHaul (FH) using legacy CPRI type interface
- CPRI (PHY RF split) Limitations
 - 20 MHz 2 x 2 LTE sector requires ~ 2.5 Gbps FH BW
 - Max ~ 25 Gbps, Stringent delay requirements
 - Does not scale with BW and # of antenna elements
 - Closed ecosystem
- Need to study alternate RAN architectures and split options

3. Interaction between RAN protocol and architecture designs

- Protocol design should allow for architecture flexibility
- Impacts and impacted by several aspects including HARQ design, Timing Advance, Scheduling Latency, CSI feedback, Segmentation/Re-assembly etc


RAN Split Benefits/Drivers

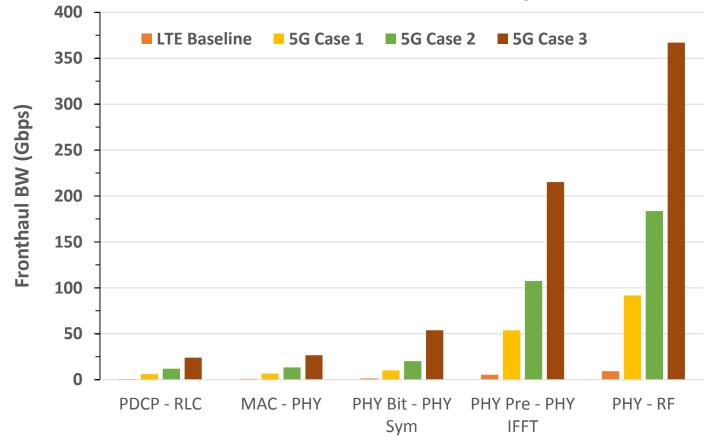

Resource Pooling	 Pool resources across multiple eNBs L2/L3 resources dimensioned on aggregate traffic / connections L1 resources dimensioned on RF BW & antennas
Cooperative Processing	 Centralized Scheduling and Interference management UL/DL CoMP schemes
Increased Virtualization	 Enable SDN/NFV with general purpose compute hardware Efficient scalable RAN
Easier Upgrades and Self Healing	 Reduce hardware/software upgrade & provisioning time Grow user capacity / connections / features as needed Virtual machine switchover on failure
Edge Applications	 Faster deployment of new services and features (M2M handling, Edge Analytics (User/Application), Video Optimization etc) Decouple applications from dedicated physical elements
Energy Savings	 Efficient pooling of compute to lower overall energy consumption Power down resources during lighter traffic to save energy
Reduce CAPEX/OPEX	 Large scale centralized processing on general purpose hardware Cost effective Fronthaul transport - some PHY functions at edge Easier hardware, software and vendor switching

IEEE STANDARDS ASSOCIATION

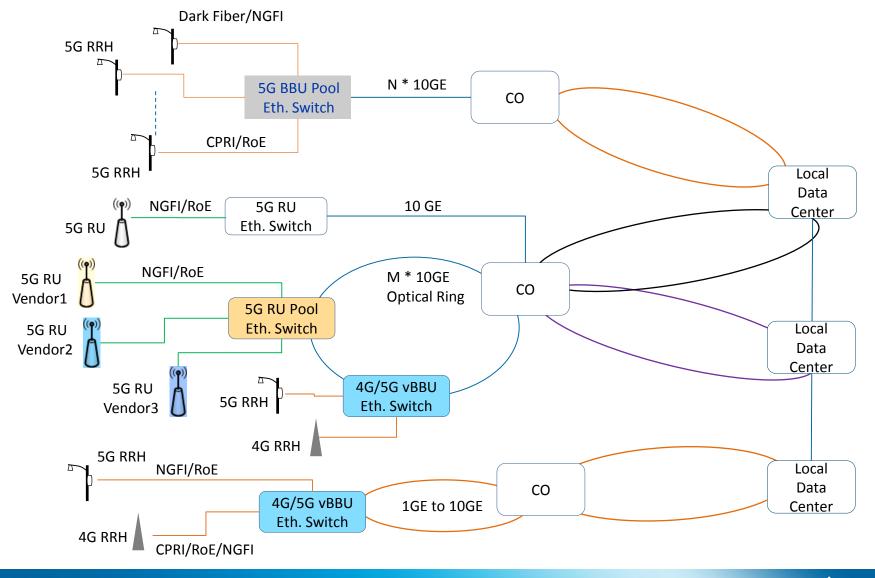
RAN Split Options and Tradeoffs

RAN Split Options: Comparison

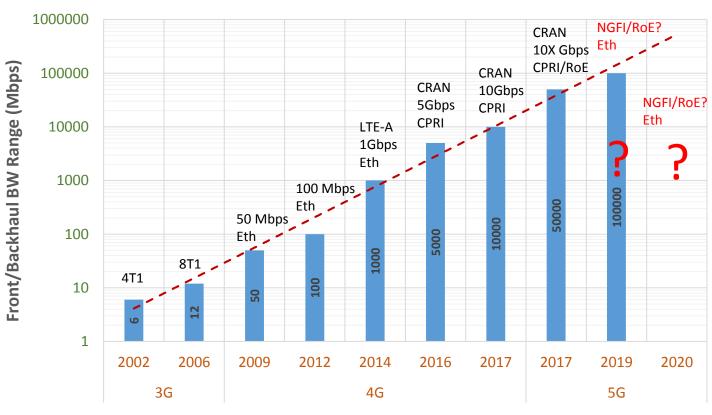
		Split Option		Front Haul Requirement		Performance/Operations			
				BW	Latency	Central Sched. & Int. Mgmt.	Cent. Gains	Interface Complexity	FH Cost
Mid High		Op 1	PDCP – RLC CU: RRC, PDCP RU: RLC, MAC, PHY, RF	Low	More Relaxed	No	Low	Moderate	Cheaper
		Op 2	RLC – MAC CU: RRC, PDCP, RLC RU: MAC, PHY, RF	Low	More Relaxed	No	Better	Moderate	Cheaper
		Op 3	MAC HI – MAC LO CU: RRC, PDCP, RLC, MAC HI RU: MAC Lo, PHY, RF	Lower	Relaxed	Yes	High	High	Cheaper
		Op 4	MAC – PHY CU: RRC, PDCP, RLC, MAC RU: PHY, RF	Lower	Strict	Yes	High	High	Cheaper
Low		Op 5	PHY Bit – PHY Sym CU: RRC, PDCP, RLC, MAC, PHYx RU: PHYy, RF	Lower	Strict	Yes	High	High	Cheaper
		Op 6	PHY Pre – PHY IFFT CU: RRC, PDCP, RLC, MAC, PHYx RU: PHYy, RF	High	Strict	Yes	Very High	Low + IFFT	Expensive
		Op 7	PHY – RF CU: RRC, PDCP, RLC, MAC, PHY RU: RF	Always High	Strict	Yes	Very High	Low Off Shelf H/W	Very Expensive


5G Fronthaul BW Estimates

Parameter	Units	LTE Baseline (UL)	5G Case 1	5G Case 2	5G Case 3	
Bandwidth	MHz	20	100	100	100	
OFDM Sym per sub frame	#	14	14	14	14	
Subframe duration	ms	1	0.2	0.2	0.2	
FFT Size	#	2048	2048	2048	2048	
# of subcarriers	#	1200	1200	1200	1200	
# of BS antenna elements/sector	#	8	8	8	16	
# of streams (layers)	#	4	4	4	8	
Bits/Sample	bit per sample	8	8	8	8	
Mod Order	bits per symbol	8	6	6	8	
Max TB Size	bits	75375	66392	66392	66392	
# of carrier aggregation	#	2	4	8	8	
Overhead of front haul protocol	%	25%	25%	25%	25%	
		Fronthaul BW				
Split Type	Units	LTE Baseline (UL)	5G Case 1	5G Case 2	5G Case 3	
PDCP - RLC	Gbps	0.7	6.0	12.0	23.9	
MAC – PHY / MAC Hi-MAC Low	Gbps	0.8	6.6	13.3	26.6	
PHY Bit - PHY Sym	Gbps	1.3	10.1	20.2	53.8	
PHY Pre - PHY IFFT	Gbps	5.4	53.8	107.5	215.0	
PHY - RF	Gbps	9.2	91.8	183.5	367.0	

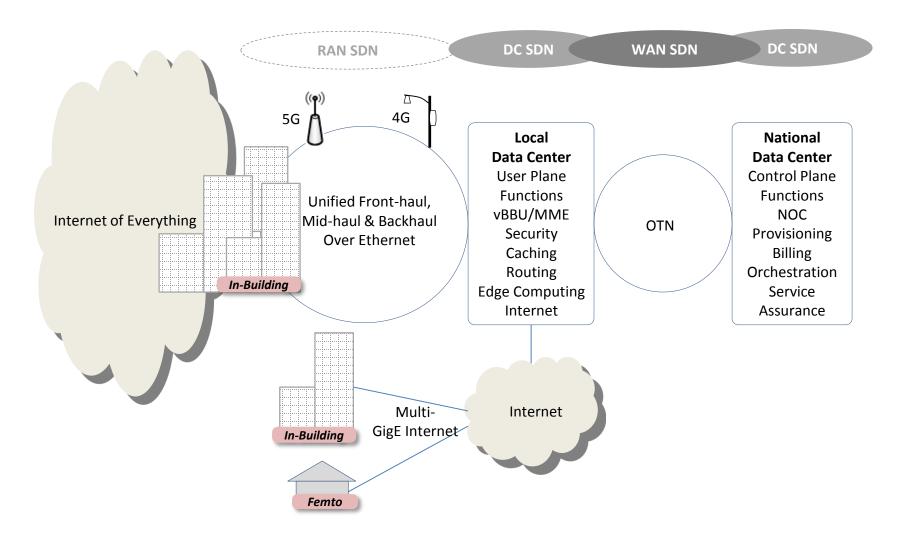

FH BW Comparison – RAN Split Options

FrontHaul Bandwidth for various options



4G/5G Fronthaul/Backhaul Architecture Options

Trajectory of Change


Transport Network Requirements Evolution

Generation - Timeline

Future Mobile/Access Network

New Opportunities/Challenges

• Unified front-haul, mid-haul and backhaul

- Move away from CPRI (technical and ecosystem limitations)
- Ethernet could be the unifier
- Enable fronthaul resilience

• Optimized RAN Split: Desired Features

- Reduced FH Bandwidth
- Low complexity interface
- Low cost off-the shelf Remote Units
- Centralization gains
- At least one high and one lower layer split

Challenges

- Tradeoffs: Timeline-Flexibility, Cent. Gains-Bandwidth
- Standardized Interfaces: Vendor Interoperability
- Ecosystem: Partners needed for equipment, compute, networking, and end-toend testbeds/PoC

