

The Impact of 5G Air Interfaces on Converged Fronthaul/Backhaul

Jens Bartelt TU Dresden / 5G-XHaul

Compliance with IEEE Standards Policies and Procedures

Subclause 5.2.1 of the *IEEE-SA Standards Board Bylaws* states, "While participating in IEEE standards development activities, all participants...shall act in accordance with all applicable laws (nation-based and international), the IEEE Code of Ethics, and with IEEE Standards policies and procedures."

The contributor acknowledges and accepts that this contribution is subject to

- The IEEE Standards copyright policy as stated in the IEEE-SA Standards Board Bylaws, section 7, <u>http://standards.ieee.org/develop/policies/bylaws/sect6-7.html#7</u>, and the IEEE-SA Standards Board Operations Manual, section 6.1, http://standards.ieee.org/develop/policies/opman/sect6.html
- The IEEE Standards patent policy as stated in the *IEEE-SA Standards Board Bylaws*, section 6, <u>http://standards.ieee.org/guides/bylaws/sect6-7.html#6</u>, and the *IEEE-SA Standards Board Operations Manual*, section 6.3, http://standards.ieee.org/develop/policies/opman/sect6.html

IEEE [WG Project 1914.1] [Next Generation Fronthaul Interface] [WG Chair: Jinri Huang]

The Impact of 5G Air Interfaces on Converged Fronthaul/Backhaul						
Date: 2016-08-23						
Author(s):						
Name	Affiliation	Phone [optional]	Email [optional]			
Jens Bartelt	TU Dresden		jens.bartelt@tu- dresden.de			

5G-XHaul Overview

5G-XHaul partners:

Disclaimer:

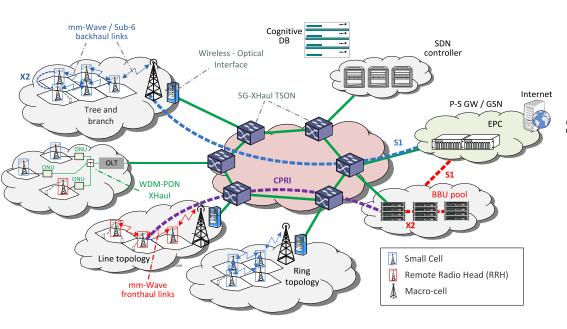
The presented work is research-in-progress.

The results and conclusions presented do not necessarily represent the view of all project partners.

Outline - The Impact of 5G Air Interfaces on Converged Fronthaul/Backhaul

Agenda:

- Converged transport network for 5G
- Assumptions for 5G air interfaces, functional splits
- Statistical multiplexing gains in packet-based transport
- Resulting requirements for the transport network (data rate, delay, delay accuracy)
- Transport classes for converged fronthaul/backhaul



5G-XHaul in a Nutshell

Focus on transport network

Challenges:

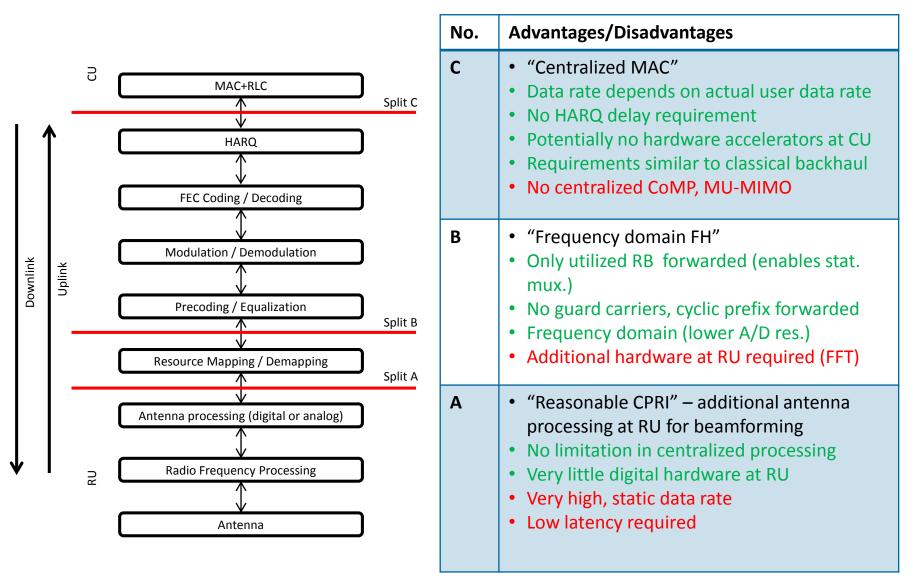
- Heterogeneous RAN technologies: D-RAN vs. C-RAN, sub-6 vs. mmWave, small cells vs. macro
- New RAN requirements: higher data rates, low latency, resilience, MTC

5G-XHaul Approach:

Convergence

- Wireless Optical
- Backhaul (BH) Fronthaul (FH)

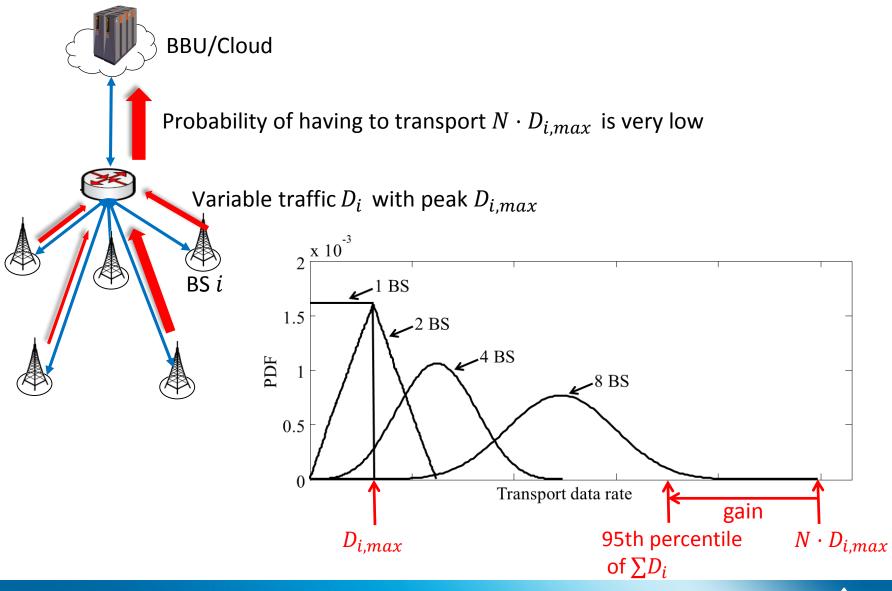
Data Plane


- Wireless
 - P2MP mmWave (60 GHz)
 - Sub-6
- Optical
 - TSON
 - WDM-PON

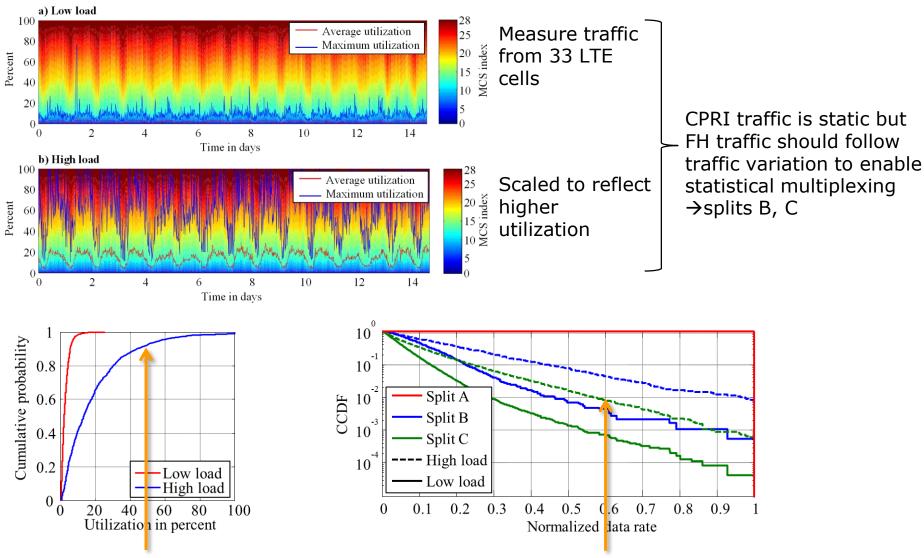
SDN Control plane

- Unified for wireless & optical
- Aware of spatio-temporal demand variations (in the RAN)
- Interfaces for joint RAN transport design

Functional Splits Considered

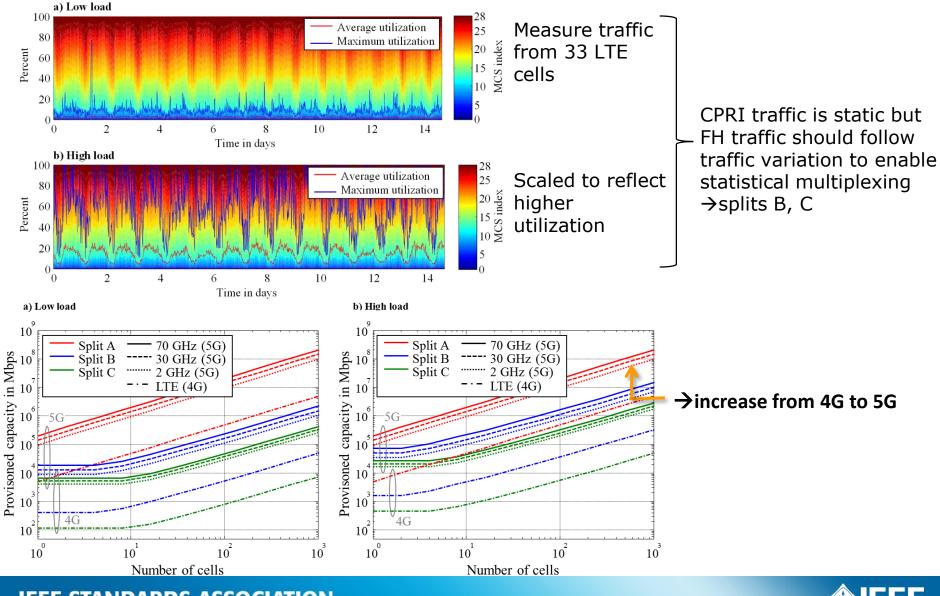


5G Air Interface Assumptions (based on [4])

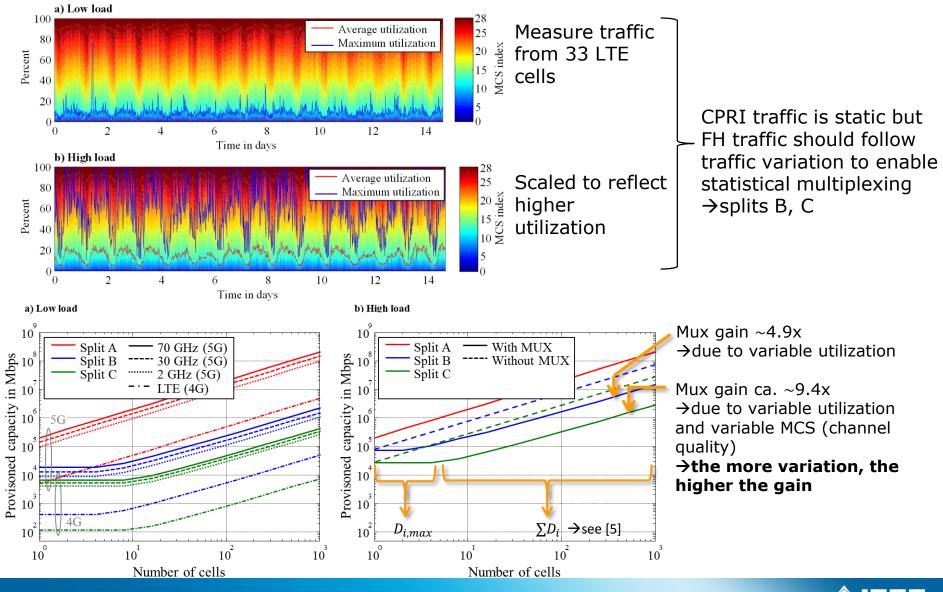

Parameter	Symbol	LTE	Sub-6	Low mmWave	High mmWave
Carrier Frequency [GHz]	f _c	2	2	30	70
Channel Size [MHz]	BW	20	100	250	500
Sampling Rate [MHz]	fs	30.72	150	375	750
# Antennas	N _A	4	96	128	256
# ADC/DAC chains	N _P	4	16	12	10
# Layers	N _L	4	16	12	10
Overhead	γ	1.33	1.33	1.33	1.33
Quantizer resolution time domain	N _{Q,T}	15	15	12	10
Quantizer resolution frequency domain	N _{Q,F}	9	9	8	7
Modulation order	М	64	1024	256	64
Max. code rate	R _C	0.85	0.85	0.85	0.85
Frame duration [ms]	T_F	1	1	1	1
FFT size	N _{FFT}	2048	2048	2048	2048
# Active subcarriers	N _{SC,act}	1200	1300	1300	1300
# Data symbols per frame	N _{Sy}	14	70	150	300
Peak utilization	μ	1	1	1	1
Formula data rate split A	$D_A = 2 \cdot N_P \cdot f_S \cdot N_{Q,T} \cdot \gamma$				
Formula data rate split B	$D_B = 2 \cdot N_P \cdot N_{SC,act} \cdot N_{Sy} \cdot N_{Q,F} \cdot T_F^{-1} \cdot \mu \cdot \gamma$				
Formula data rate split C	$D_{\rm C} = N_L \cdot N_{SC,act} \cdot N_{Sy} \cdot R_c \cdot \log_2 M \cdot T_F^{-1} \cdot \mu \cdot \gamma$				
Peak data rate split A [Gbps]	D _A	4.9	95.8	143.6	199.5
Peak data rate split B [Gbps]	D _B	1.6	34.9	49.8	72.6
Peak data rate split C [Gbps]	D _C	0.46	16.5	21.2	26.5

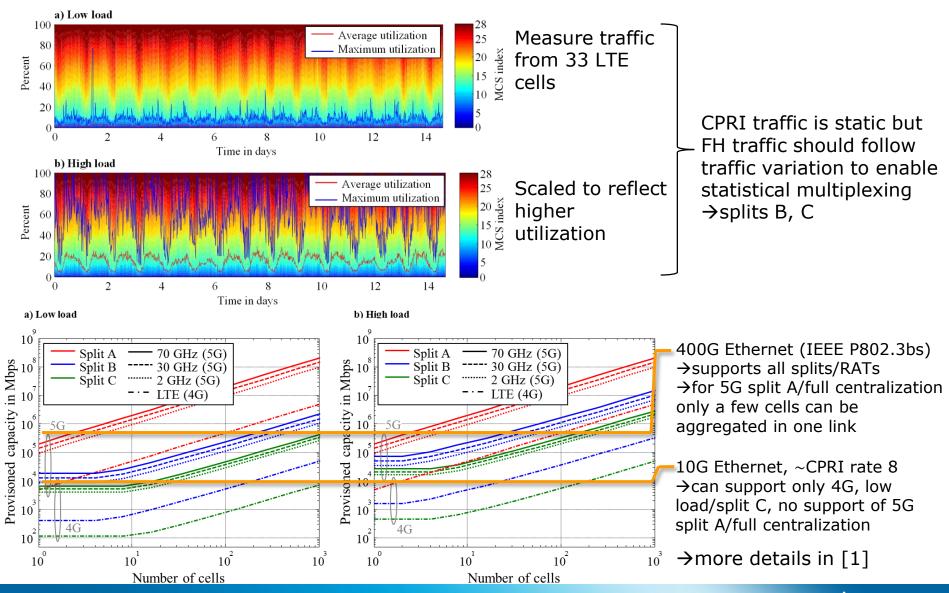
Statistical Multiplexing

Data Rate Requirements – Measurements



e.g., utilization below 50 % in 90 % of cases


e.g., traffic below 60 % in 99 % of cases


Data Rate Requirements – 4G vs 5G

Data Rate Requirements – Statistical Multiplexing

Data Rate Requirements – Ethernet Technologies

Delay and Delay Accuracy Requirements

- Delay requirement of CPRI (~200 µs) induced by HARQ and BB processing time
 →depends on MAC standardization, not necessarily on physical constraints
 →higher margin could already be considered in RAN design if required for transport
- Maximum delay based on channel coherence time (for centralized precoding, adaptive MCS, needs to also include BB processing time):
 →more relaxed for low speeds, low bands; even stricter for high speeds, high bands

Parameter	Symbol	LTE	Sub-6	Low mmWave	High mmWave
Carrier Frequency [GHz]	f _C	2	2	30	70
Formula for channel coherence time	$T_C = \sqrt{\frac{9}{16 \pi} \frac{c}{v \cdot f_C}}$				
Channel coherence time at 3 km/h [ms]	<i>T_{C,3}</i>	76.14	76.14	5.08	2.18
Channel coherence time at 250 km/h [ms]	$T_{C,250}$	0.91	0.91	0.06	0.03

- Delay accuracy of CPRI (~16 ns) is equivalent to ½ sample duration, precise reason unclear (CP should be able to compensate offset between antennas)
- Already very challenging for Ethernet, even more challenging for 5G:
 →[2] claims to achieve sub-ns precision via Ethernet

Parameter	Symbol	LTE	Sub-6	Low mmWave	High mmWave
Carrier Frequency [GHz]	fc	2	2	30	70
Channel Size [MHz]	BW	20	100	250	500
Sampling Rate [MHz]	fs	30.72	150	375	750
Timing accuracy (1/2 sample duration) [ns]	Tj	16.3	3.33	1.33	0.67

Transport Classes

Requirements for transport may not only come from RAN, but also from new applications:

•Tactile Internet requiring low round-trip latency (1 ms - 10 ms)

 \rightarrow low latency required also for transport, even with no centralization (traditional backhaul)

•V2X requires high reliability

 \rightarrow highly reliable transport required

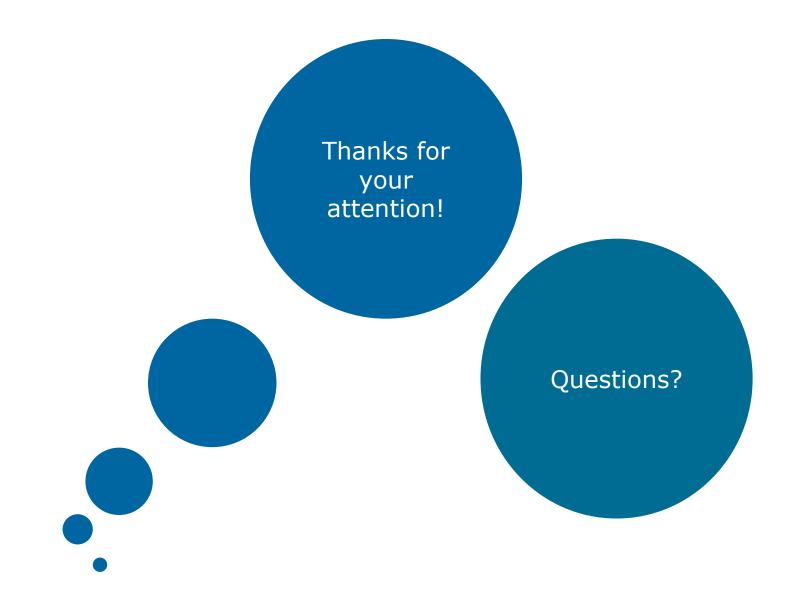
- Converged transport network should support traffic with different requirements, differentiation into data, control, sync packets might not be sufficient
- Packets need to be prioritized at SDN-routers but quickly addressable TCAM memory limited [3]

→proposal of "Transport Classes" (TCs)which consolidate several requirements
→initial proposal (will most likely be extended, e.g. adding broadcast):

	Use case	Transport latency (round trip)	Synchronization	Typical data rate per access point
TC 0	Synchronization	Very low variance	Enabler	10 Mbps
TC 1	 Split A traffic Split B traffic without relaxed HARQ Tactile user traffic Failover signaling SDN in-band control signaling 	≤ 200 μs	Synchronous, time aligned	200 Gbps
TC 2	 Split B traffic with relaxed HARQ Split C traffic with coordinated beamforming Relaxed tactile user traffic 	≤ 2 ms	Synchronous, time aligned	80 Gbps
TC 3	 Split C traffic without coordinated beamforming Conventional BH/ fixed access traffic Control signaling 	≤ 20 ms	Asynchronous, not time aligned	25 Gbps

Suggestions to 1914

- NGFI has the potential for unified transport network, converging fronthaul and backhaul
- Transport network should be packet-based (potentially Ethernet), SDNenabled
- 5G air interface will increase requirements for transport, should ideally be considered from the start
- Transport network should **support different functional splits/interfaces** over the same infrastructure, i.e. legacy FH, legacy BH, intermediate splits
- Intermediate splits + packet-based enable statistical multiplexing which decreases requirements
- Requirements can not only come from RAN but also from new applications (low latency, high reliability)
- Different transport classes could be introduced to differentiate packets by requirements and process appropriately


References

[1] 5G-XHaul Deliverable D2.1, available: <u>http://www.5g-xhaul-project.eu/download/5G-XHaul D 21.pdf</u>

[2] The White Rabbit Project, <u>http://www.ohwr.org/projects/white-rabbit</u>

- [3] see e.g., M. Dong, H. Li, K. Ota and J. Xiao, "Rule caching in SDNenabled mobile access networks," IEEE Network, vol. 29, no. 4, pp. 40-45, July-Aug. 2015.
- [4] 3GPP TR 38.913: Study on Scenarios and Requirements for Next Generation Access Technologies, v0.30, March 2016.

[5] NGMN Alliance, "Guidelines for LTE Backhaul Traffic Estimation," White paper, July 2011. [Online]. Available: http://www.ngmn.de/uploads/media/NGMN_Whitepaper_Guideline_for _LTE_Backhaul_Traffic_Estimation.pdf. Accessed Jan. 20, 2016.

