

Fronthaul architecture towards 5G Multiplexing gains analysis Challenges/solutions for fronthaul network

Aleksandra Checko, MTI 8/22-24/2016

In collaboration with: MTI Radiocomp: Andrijana Popovska Avramova, Morten Høgdal, Georgios Kardaras DTU: Michael Berger, Henrik L. Christiansen EU project HARP consortium

Compliance with IEEE Standards Policies and Procedures

Subclause 5.2.1 of the *IEEE-SA Standards Board Bylaws* states, "While participating in IEEE standards development activities, all participants...shall act in accordance with all applicable laws (nation-based and international), the IEEE Code of Ethics, and with IEEE Standards policies and procedures."

The contributor acknowledges and accepts that this contribution is subject to

- The IEEE Standards copyright policy as stated in the IEEE-SA Standards Board Bylaws, section 7, <u>http://standards.ieee.org/develop/policies/bylaws/sect6-7.html#7</u>, and the IEEE-SA Standards Board Operations Manual, section 6.1, http://standards.ieee.org/develop/policies/opman/sect6.html
- The IEEE Standards patent policy as stated in the *IEEE-SA Standards Board Bylaws*, section 6, <u>http://standards.ieee.org/guides/bylaws/sect6-7.html#6</u>, and the *IEEE-SA Standards Board Operations Manual*, section 6.3, http://standards.ieee.org/develop/policies/opman/sect6.html

IEEE 1914.1 TF NGFI Bomin Li (bomin.li@comcores.com)

Fronthaul architecture towards 5G			
Multiplexing gains analysis			
Challenges/solutions for fronthaul network			
Date: 2016-08-23			
Author(s):			
Name	Affiliation	Phone [optional]	Email [optional]
Aleksandra Checko	MTI (Microelectronics Technology, Inc.)		aleksandra.checko @mtigroup.com

5G requirements and challenges

Source: netmanias

- To carry **20Gb/s** as I&Q signals (64-QAM ³⁄₄) over CPRI will require a CPRI data rate of at least **325Gb/s**
- \rightarrow Not acceptable for NGFI
- New functional split is needed
 - User processing in BBU
 - Cell processing in RRH
 - Split functions, still benefit from C-RAN (e.g. CoMP)
- \rightarrow Variable bit rates on fronthaul
- Agenda for today
 - How big are the multiplexing gains in C-RAN?
 - How to optimize fronthaul network?

Studying multiplexing gains - towards quantifying benefits of C-RAN

Multiplexing and pooling gain defined

Exploring the tidal effect

Exploring different application mixed and measurement methods

Multiplexing gains are available for any shared resources

How big are the multiplexing gains in C-RAN?

Multiplexing gains are available for any shared resources

Multiplexing gains in C-RAN

Sources

- Aggregation of bursty traffic
- Tidal effect
- Different functional splits
 - On BBU/fronthaul

Impact energy and cost savings

- On user-data dependent resources
- Processing: ctrl + cell + user
 - 3-12% on downlink, 17-33% on uplink of total baseband processing [2]

MG

– Power: ctrl + cell + user

- PDCP PGPDCP User processing RLC PGRIC Variable MAC PGMAC bit rate **Bit-level** PG_{BIP} processing **OAM** Ρ PGOAM Antenna mapping Н **Resource mapping** processing PG_{RM IFFT} IFFT Cell Constant bit rate CP PGCP
- 2-24 % of total base station consumption [2]

MG

Exploring tidal effect – analytical approach

Traffic in London, from MIT/Ericsson [3]

Exploring application mix – OPNET simulations [5]

Results for 30% office, 70% residential cells, web and video traffic Traffic burstiness contributes to multiplexing gain up to 6

Discussion

- PG from analyzing compute resource utilization, in Giga Operations Per Second (GOPS): 1.09 - 1.37, source: Werthmann et al. [6]. Tidal effect not accounted.
- PG based on population in different districts in Tokyo: 4, source: Namba et al. [7]
- MG from tidal effect: 1-1.3
- MG from traffic burstiness: up to 6
- Fraction of it impacts baseband resources (3-33%) to achieve PG
- \rightarrow MG up to 6 achievable on fronthaul, fraction of it achievable on BBU side
- → New functional split should result in bursty traffic being as "low" as possible (closest to BB-RF – traditional RRH BBU split) to benefit from C-RAN (e.g. spectral efficiency)

Fronthaul transport network - Towards NGFI

Transport options

Synchronization challenge: application of IEEE 1588

Delay challenge: application of TSN

Possible transport solutions

Shared Ethernet for cost-saving and flexibility [8]

- ✓ Widely deployed (reuse!)
 - ✓ Dedicated links
 - ✓ Shared links
- ✓ Aggregation
 - ✓ Multiplexing gains on BBU and links

- Fronthaul cost savings vs problems with delays and synchronization
 - ! Synchronous CPRI vs asynchronous Ethernet
 - ! Data delay: 100-400 us, ≈constant

Timing in fronthaul

- Timing is really important
 - Frequency of transmission
 - Handover, coding, cooperative techniques, positioning
- Requirements (4G)
 - Frequency error LTE A TDD/FDD: ±50 ppb
 - Phase error LTE-A with eICIC/CoMP: ± 1.5
 5 μs, MIMO: 65 ns, positioning: ± 30 ns
 - What are the requirements for RoE and 5G?
- Current solutions for timing distribution
 - GPS
 - PHY layer clock SyncEth
 - Packet-based timing
 - IEEE 1588v2 (PTP)
 - Multiple

How to reduce queueing delays?

Preemption (switch upgrade required)

IEEE 802.1, Time Sensitive Networking task force

- Frame preemption (802.1Qbu)
- Scheduled traffic (802.1Qbv)
- Time-Sensitive Networking for Fronthaul (profile definition, 802.1CM)

Scheduling and source scheduling

Exemplary architecture

Conclusions and final remarks

Costs vs savings

Costs

- 2x2 MIMO, 20 MHz LTE,
 15+1 CPRI →2.5 Gbps
- 3 sectors? → 7.5 Gbps

Savings

- Equipment
- Energy

Conclusions, proposals to 1914

- Optimal functional split is needed to reduce data rate and benefit from multiplexing gains on fronthaul, while exploiting benefits of C-RAN
- One split probably won't fit all possible reconfiguration options are interesting
- Multiplexing gains are possible on BBU resources (on 3-33% of resources), and for variable bit rate split also on fronthaul.
- Industry shows a strong interest in packet-based fronthaul.
- Ethernet-based fronthaul with traffic scheduling and/or preemption has the potential to meet mobile networks' requirements while being costefficient.

Thank you for your attention

References

[1] C-RAN The Road Towards Green RAN. Tech. rep. China Mobile Research Institute, October 2011

[2] C. Desset, et al. "Flexible power modeling of LTE base stations". In: Wireless Communications and Networking Conference (WCNC), 2012 IEEE, Apr. 2012, pp. 2858–2862.

[3] Many cities. MIT Senseable City Lab. [cited: January 2016]. URL: http://www.manycities.org/

[4] A. Checko, H. Holm, and H. Christiansen. "Optimizing small cell deployment by the use of C-RANs". In: European Wireless 2014; 20th European Wireless Conference; Proceedings of. 2014 VDE

[5] A. Checko^{1st}, A. P. Avramova^{1st}, H. L. Christiansen, and M. S. Berger. "Evaluating C-RAN fronthaul functional splits in terms of network level energy and cost savings". in Journal of Communications and Networks, vol. 18, no. 2, pp. 162-172, April 2016.

[6] T.Werthmann, H. Grob-Lipski, and M. Proebster. "Multiplexing gains achieved in pools of baseband computation units in 4G cellular networks". In: Personal Indoor and Mobile Radio Communications (PIMRC), 2013 IEEE 24th International Symposium on. Sept. 2013, pp. 3328–3333.

[7] S. Namba, et al. "Colony-RAN architecture for future cellular network". In: Future Network Mobile Summit (FutureNetw), 2012. July 2012, pp. 1–8

[8] A. Checko, A. Juul, H. Christiansen, M. S. Berger, "Synchronization Challenges in Packet-based Cloud-RAN Fronthaul for Mobile Networks", IEEE ICC 2015

A. Checko, H. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M.S. Berger and L. Dittmann "Cloud RAN for Mobile Networks - a Technology Overview", IEEE Communications Surveys & Tutorials

