

Next Generation Fronthaul Interface - Use Cases & Scenarios

Lujing Cai, Spyridon Kapoulas, Abdellah Tazi AT&T

Compliance with IEEE Standards Policies and Procedures

Subclause 5.2.1 of the *IEEE-SA Standards Board Bylaws* states, "While participating in IEEE standards development activities, all participants...shall act in accordance with all applicable laws (nation-based and international), the IEEE Code of Ethics, and with IEEE Standards policies and procedures."

The contributor acknowledges and accepts that this contribution is subject to

- The IEEE Standards copyright policy as stated in the IEEE-SA Standards Board Bylaws, section 7, <u>http://standards.ieee.org/develop/policies/bylaws/sect6-7.html#7</u>, and the IEEE-SA Standards Board Operations Manual, section 6.1, http://standards.ieee.org/develop/policies/opman/sect6.html
- The IEEE Standards patent policy as stated in the *IEEE-SA Standards Board Bylaws*, section 6, <u>http://standards.ieee.org/guides/bylaws/sect6-7.html#6</u>, and the *IEEE-SA Standards Board Operations Manual*, section 6.3, http://standards.ieee.org/develop/policies/opman/sect6.html

IEEE [WG Project #] [WG Name] [WG Chair Name and Email]

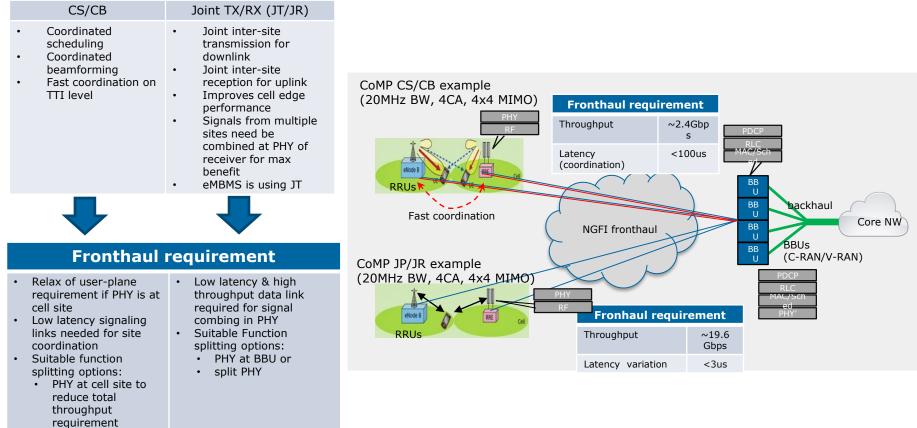
Next Generation Fronthaul Interface - Use Cases & Scenarios				
Date: 2016-08-22				
Author(s):				
Name	Affiliation	Phone [optional]	Email [optional]	
Lujing Cai	AT&T			
Spyridon Kapoulas	AT&T			
Abdellah Tazi	AT&T			

Contents

- Fronthaul Impact by 4G/5G RAN Evolution
 - General RAN requirement
 - Use cases: CoMP/FD-MIMO/IOT
 - Fronthaul Impact by current & future RAN technologies
 - RAN function split options summary
- C/V-RAN Fronthaul Challenges
 - Fronthaul CPRI capacity requirements for various network deployment scenarios
 - Fronthaul Transport and C/V-RAN
 - Next Generation Fronthaul Transport and C/V-RAN

Fronthaul impact by 4G/5G RAN evolution

General RAN requirement


	4G/4G+ (Rel.13)	5G
RAN technologies	LTE/LTE advanced	5G new radio (NR)
Bandwidth	100MHz and up (*)	850MHz (**)
Peak data rate requirement	1Gbps DL, 500MHz UL	20Gbps DL, 10Gbps UL
Peak spectral efficiency	30bits/Hz down, 15bits/Hz up	30bits/Hz down, 15bits/Hz up
End-end delay requirement	20ms RRT	eMBB: 4msDL+4ms UL URLCC: 0.5ms DL+0.5msUL

(*) BW will increase with LAA (**) FCC 16-89

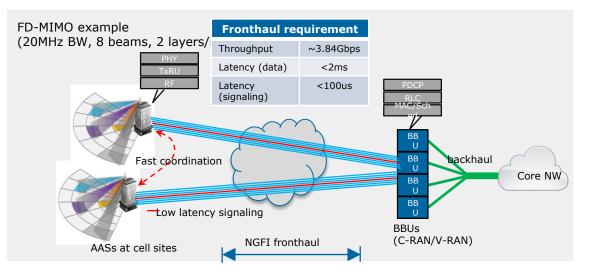
User Case: CoMP

Coordinated Multi Point

 MAC scheduler at BBU for fast intersite coordination

IEEE STANDARDS ASSOCIATION

User Case: FD-MIMO


Full Dimension MIMO

- Practical solution of Massive-MIMO to reduce implementation complexity for cell densification
- Active array systems (AAS) to steer beams in both azimuth and elevation directions
- Simultaneous beams to support high order MU-MIMO
- Separated beamforming for CSI reference signals
- Possible RT coordination among AASs to reduce inter-site interference
- Large number of TxRUs at cell site for antenna phase control

Fronthaul requirement

- Massive connections to each cell site (per each TxRU, up to 64 of them)
- Suitable function splitting options:
 - PHY at cell site to reduce total throughput requirement
 - MAC scheduler at BBU for fast intersite coordination

User case: IOT

NB-IOT example (4 Tx antennas for PF) **IOT use case** Fronthaul categories requirement 76.8Mpb Throughp Non-critical apps ut s Massive numbers ~500us Latency Low cost/low power . Low mobility Small data packets BΒ Infrequent transmission BB backhaul Non-time critical Core NW BB BB **Current 3GPP IOT air interface** BBUs technologies (C-RAN/V-RAN) NGFI fronthaul RRUs at cell sites R13 Cat-M1 **R13 NB-IOT** Low Max BW 1.4MHz 200kHz bandwidth Peak data rate 1Mbps 70kbps More suitable for Low data rate Low Fronthaul over Ethernet **RF** Sample 1.92MHz 480kHz Fronthaul frequency throughput & all processing Low sample requirement functions centralized at Max: 16QAM rate Modulation order QPSK BBU Low Num of UE RX 1 1 antenna modulation **Requirement on** Operation mode Standalone Standalone scalability of aggregated Guard-band small data packets In-band

IEEE STANDARDS ASSOCIATION

15dB

20dB

Yes

Coverage

extension Software PHY

Fronthaul Impact by current & future RAN technologies

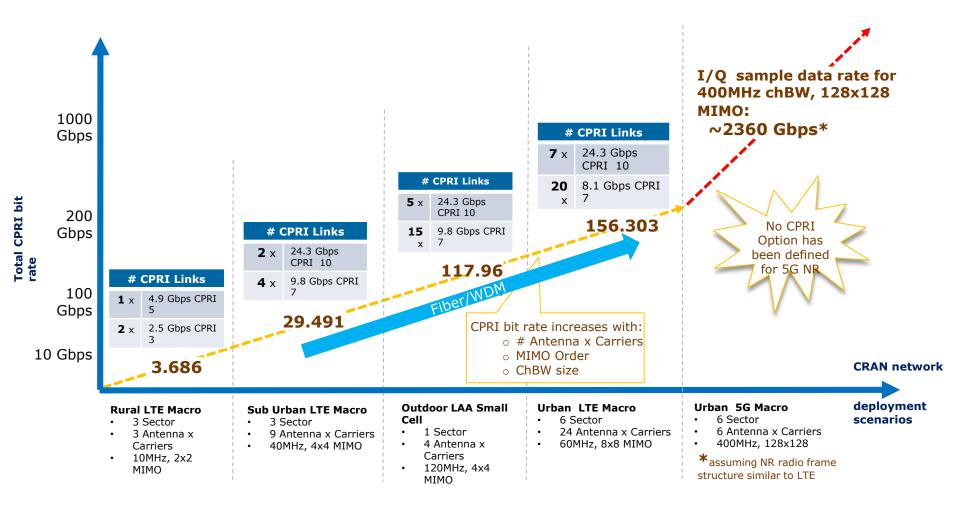
Evolution To 5G

Current RAN technologies		Fronthaul impact		
		Capacity	Latency	
CoMP CS/CB/ JT	Real time intra/inter-site coordination	Proportional to user data rate	Fast control/signaling link to ensure multiple site synchronization at sub-frame level	
CoMP JR	Real time intra/inter-site Signal combining	Proportional to BW & number of TX antennas. Significant larger than user data rate	Very tight synchronization requirement to ensure signal alignment (< few of µs)	
FD- MIMO	Large number of antennas at cell site. High order MU- MIMO	Proportional to user data rate x order of MU-MIMO users.	Fast control/signaling link to ensure site synchronization, if inter-site coordinated	
LTE-M /NB- IOT	Large number of devices, small packets	Low capacity requirement. Aggregation & Scalability requirement	Low latency requirement	

Future RAN technologies		Fronthaul impact		
		Capacity	Latency	
Massive MIMO (eMBB)	Massive number of antennas + cross-site BF/MIMO among small cells	Astronomical increase of capacity requirement due to the vast increase of user data rate, i.e. 20xLTE-A and ≥ x10 MIMO order	Tighter end-to-end RAN delay requirement (by a factor of roughly 2.5) will lead to much shorter sub-frame length, CP, and HARQ loop time in PHY design, which in turn will place even more rigorous fronthaul requirement in terms of latency	
Massive IOT (mMTC)	Massive number of devices	Low capacity requirement. Aggregation & Scalability requirement	Less challenge for non-critical IOTs (critical IOT use cases should follow URLLC category)	
URLLC	Ultra low delay Ultra reliable	Depends on the application, i.e. VR with RT Video dramatically impacts capacity	1ms RTT in 5G NR RAN. Extremely challenging, i.e. ~1/20 of LTE RAN, 1/8 of eMBB 5G NR	

IEEE STANDARDS ASSOCIATION

Function split option summary


BBU RRU	PDCP RLC MAC/Scheduler PHY RF	PDCP RLC MAC/Scheduler PHY' PHY RF	PDCP RLC MAC/Scheduler PHY RF	PDCP RLC MAC/Scheduler PHY RF	PDCP RLC MAC/Scheduler PHY RF
	Option 1	Option 2	Option 3	Option 4	Option 5
	All processing functions centralized at BBU	PHY split	PHY&MAC split	MAC&RLC split	RLC&PDCP split
Rough estimate of Throughput (T) (bi-direction)	~60*Ntx*BW T1	8*L*MSC*BW T2~=0.8*T1	~2*R T3~=T1/8	~2*R T4 <t3< td=""><td>~2*R T5<t4< td=""></t4<></td></t3<>	~2*R T5 <t4< td=""></t4<>
Latency requirement	micro sec range	micro sec range	mili sec range	mili sec range	mili sec range
CoMP performance	Combining gain & Coronation gain	Combining gain & Coordination gain	Coordination gain	Diversity gain only	Diversity gain only
Data types	I/Q samples	OFDM symbols Control/signaling	MAC PDUs Control/signaling	RLC PDUs Control/signaling	PDCP PDUs Control/signaling
Notes	Current CPRI solution	HARQ combining& FEC centralized or IRC also centralized			
Ntx: number of TX antennas, BW: bandwidth, R: peak data rate, MCS: modulation order, L: number of MIMO layers					
Challenge: If different vendor devices deployed at two sides of the splitting point, are they interoperable?					

C/V-RAN Fronthaul Challenges

Fronthaul CPRI capacity requirements for various network deployment scenarios

Fronthaul Transport and C/V-RAN

Fronthaul Challenges when deploying C/V-RAN


- Today CPRI is the preferred transport protocol to implement the RAN functional split between Radio (I/Q) and Baseband, however
 - CPRI bit rate linearly increases with
 - Channel bandwidth
 - MIMO order
 - Number of sectors
 - Cloud/Virtual RAN deployment over CPRI demands fiber and WDM, however
 - fiber is not everywhere available and costly to deploy
 - CPRI/WDM does not support
 - switching
 - CoS and manageability
 - Strict Latency requirements when CoMP is considered
 - CPRI does not scale well with the continuous increase of Peak User throughput and Cell Site capacity
 - Need a more agile transport mechanism for wide deployment of Cloud RAN, where Operators should be able to choose the access medium (i.e. copper, fiber, mW) and protocol (i.e. GPON, metro Ethernet) based on network economics and technology trends.

Next Generation Fronthaul Transport and C/V-RAN

Next Generation Fronthaul Interface (NGFI)

- Should support:
 - Legacy C-RAN deployment
 - Include CPRI to ensure fronthaul transport continuity for legacy RRUs/BBUs
 - Migration from CPRI/WDM architecture to CPRI/packet/WDM architecture
 - Consider latency requirements for inter-BBU pool co-ordination
 - Further optimize CPRI bit rate \rightarrow compression
 - Support LTE HW protocol split evolution
 - All possible protocol split architectures, so operators can chose the split architecture based on medium (copper, fiber, MW), distance (BBU-RRU, BBU-BBU) and spectrum efficiency
 - Support New Radio (5G) air interface
 - Massive MIMO and URLCC pose great challenges for Fronthaul capacity and latency
 - All possible functional split options for 5G RAN

Q&A Discussion

