IEEE STANDARDS ASSOCIATION

Practical approach to converged FH/BH network architecture and functional partitioning

Jouni Korhonen Broadcom Ltd. 8/22-24/2016 IEEE 1914.1 TF

Compliance with IEEE Standards Policies and Procedures

Subclause 5.2.1 of the *IEEE-SA Standards Board Bylaws* states, "While participating in IEEE standards development activities, all participants...shall act in accordance with all applicable laws (nation-based and international), the IEEE Code of Ethics, and with IEEE Standards policies and procedures."

The contributor acknowledges and accepts that this contribution is subject to

- The IEEE Standards copyright policy as stated in the IEEE-SA Standards Board Bylaws, section 7, <u>http://standards.ieee.org/develop/policies/bylaws/sect6-7.html#7</u>, and the IEEE-SA Standards Board Operations Manual, section 6.1, http://standards.ieee.org/develop/policies/opman/sect6.html
- The IEEE Standards patent policy as stated in the *IEEE-SA Standards Board Bylaws*, section 6, <u>http://standards.ieee.org/guides/bylaws/sect6-7.html#6</u>, and the *IEEE-SA Standards Board Operations Manual*, section 6.3, http://standards.ieee.org/develop/policies/opman/sect6.html

IEEE 1914.1 TF NGFI Bomin Li (bomin.li@comcores.com)

Practical approach to converged FH/BH network architecture and functional partitioning Date: 2016-08-22 Author(s):								
					Name	Affiliation	Phone [optional]	Email [optional]
					Jouni Korhonen	Broadcom Ltd.	+1-408-391-7160	jouni.korhonen@broa dcom.com

Г

Outline

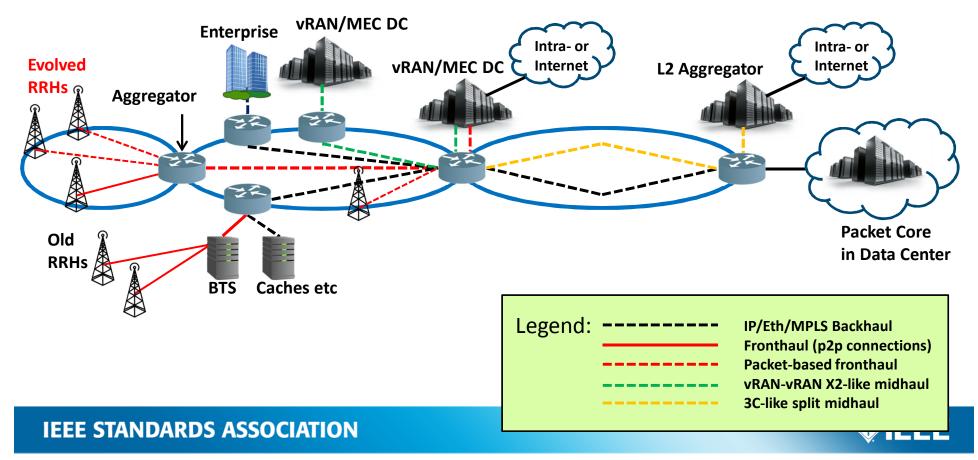
- Architecture proposal for converged fronthaul and backhaul network for 4.5/5G RAN.
- Functional splits from a general purpose circuit point of view.
- Proposal NGFI interfaces and functional splits.

Objective

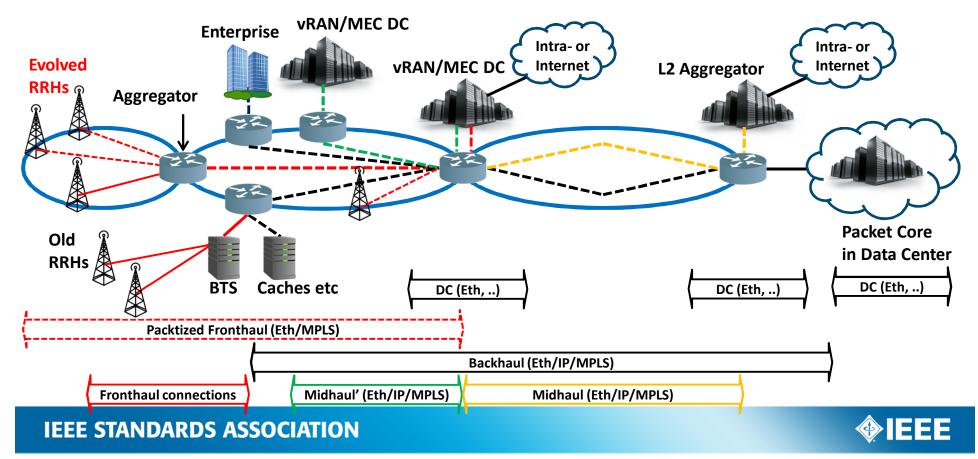
- Evolutionary path from 3/4G to 5G RAN.
- Identify the essential features from 4.5/5G RAN transport circuit & equipment realization point of view:
 - Flexibility vs Bandwidth/time-synchronization/complexity/cost.
- Propose an architecture and functional splits to 4.5/5G RAN that:
 - Allow E2E packet & Ethernet solutions.
 - Allow converged fronthaul and backhaul network deployments.
 - Scale up to 5G numbers keeping align with optics evolution.
 - Aim at transport level interoperability.

Disclaimer

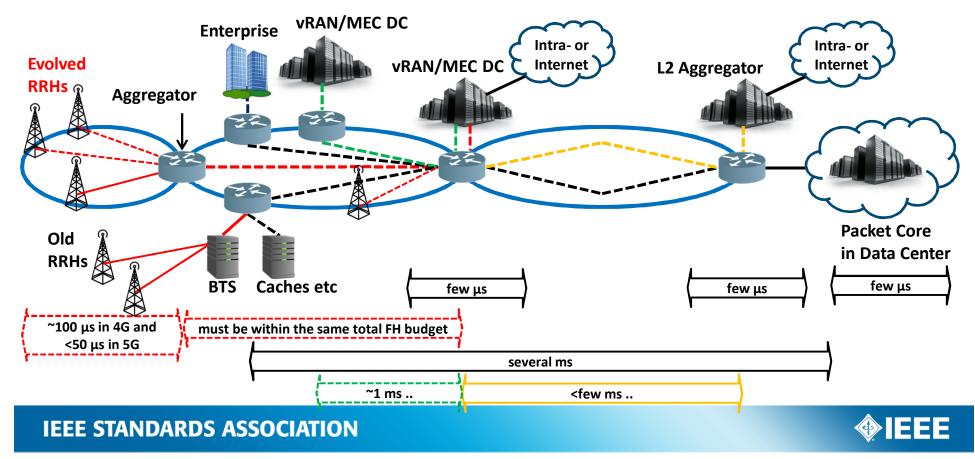
- Most numbers (that are known & fixed) are for LTE/LTE-Advanced.
- 5G numbers are estimations at best based on the publicly available material from 3GPP.

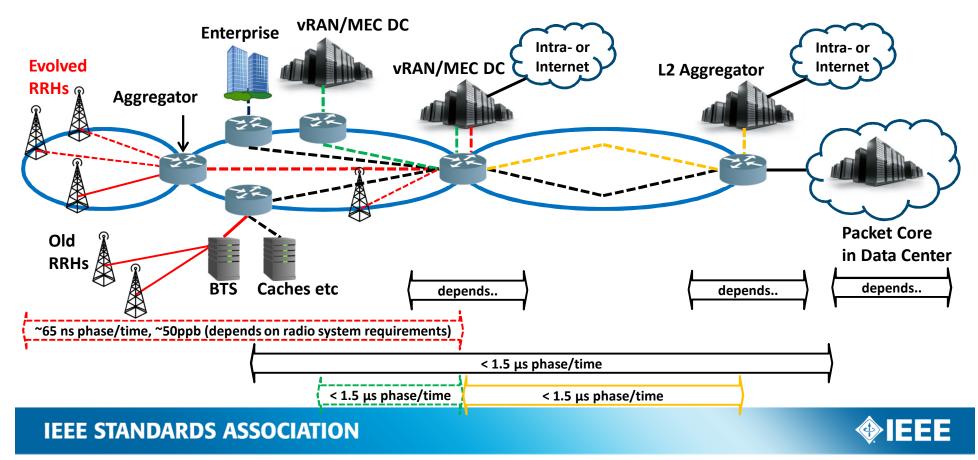

Architectural Motivations

- Relaxed backhaul bandwidth requirements, support for low latency applications and radio/proximity optimized applications.
- Converged fronthaul and backhaul with unified E2E networking infrastructure and OAM.
- Fully virtualized coordinated RAN.
- Reduced buffering in vRAN nodes and centralized higher layer radio resource/mobility management

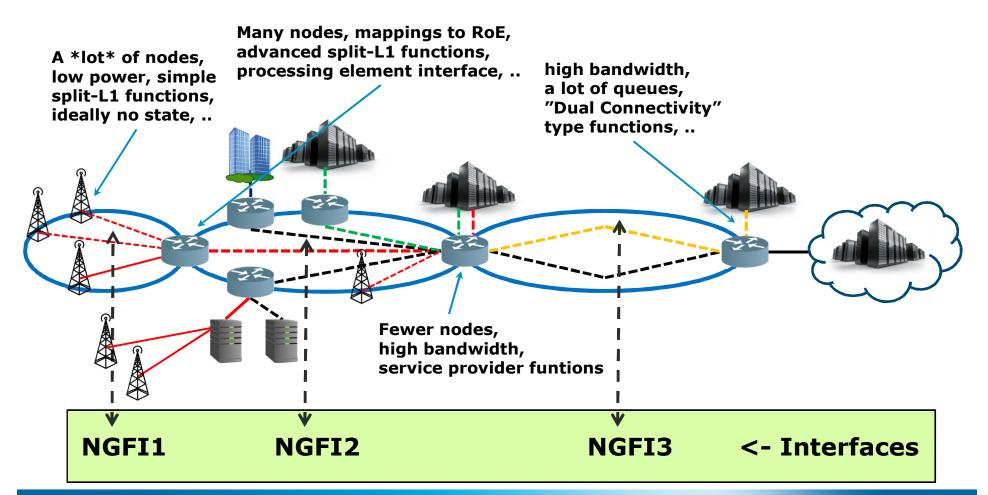

Mistakes we must avoid

- One design for 4G and a new design for 5G:
 - Migration path is key.
 - Scalability is key.
- Overly complicated solutions (difficult path to interoperability).
- Solution requiring new transport architectures:
 - Leverage existing OAM, standard protocols, etc.
- Reinventing the wheel:
 - Reuse existing time-synchronization solutions.
 - Reuse existing time-sensitive networking solutions.


High level architecture – proposal

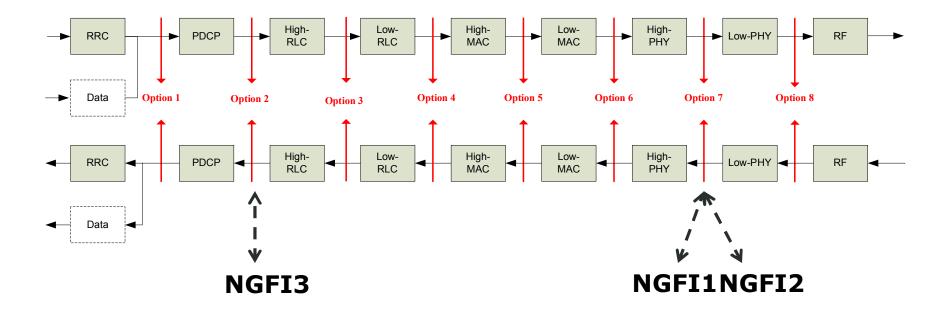

Transport view

Latency requirements


Time-synchronization requirements

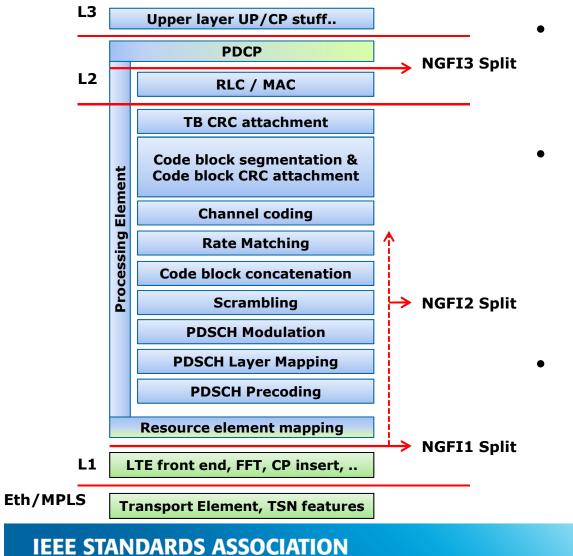
Summarizing...

- Multiple functional split points not just how it splits in the radio stack but also how it fits into network architecture.
- Different functional splits affect latencies and synchronization requirements on specific parts of the transport network – they do not change the overall system level radio synchronization requirements
- Highly accurate Time-syncronization distribution becomes key.
- Traffic isolation (no traffic interferes other traffic) becomes key.


Networking nodes and Interfaces

IEEE STANDARDS ASSOCIATION

3GPP TR38.801 functional split view


Each "interface" has different set of requirements to the networking.

Work in Progress Definitions

- Transport Element:
 - Low level packet forwarding functions and pipeline.
 - Simple and relatively static NGFI functions only.
 - Radio over Foo encap/decap including possible mappers.
 - TSN and time-synchronization features.
 - Standard functions and fully interaoperable!
- Processing Element:
 - Programmable.. complex NGFI (L1 and L2) functions.
 - No guaranteed interoperability except for transport & packetization of data.
 - Includes everything Transport Element.

LTE downling "split" example following 3GPP TS36.212 and 36.211 layering

• NGFI3:

- Dual Connectivity look-a-like – just IP transport.
- NGFI2:
 - Incrementalal to NGFI1; some parts likely outside the transport element.
 - Split point may float.
 - Converged FH and BH.

• NGFI1:

- Keep it simple -"~same" functions in DL and UL.
- Little radio expertise.
- "No software"..

Requirements based on interfaces

NGFI1

NGFI2

NGFI3

 Split functions: (I)FFT and CP 	 Split functions: NGFI1 + mappers. possibly upper PHY 	 Split functions: 3GPP 3C-like (Dual 			
insert/remove.	possibly upper PHY, PRACH handling, etc.	Connectivity)			
Transport latency/jitter:	Transport latonay (iittor)	Latency and Time-			
 Few tens of µs – based a a the EET block 	Transport latency/jitter : • Around NGEI1	synchronization:			
e.g., on the FFT block size.		 Existing ITU-T and MEF specified for BH and 			
	Time-synchronization:	MH.			
Time-synchronization:	• NGFI1 + BC support.	NGFI2 support.			
 ~1ns timestamping 					
accuracy (radio still has	Transport functions:	Transport functions:			
65ns TA & 50ppb freq.	NGFI1 + some service	Typical service provider			
accuracy or strickter)	provider features.	features.			
• 1588 + SyncE.	Strict isolation &				
OC/TC support.	protection (FH vs BH vs MH).				
Transport functions:					
• Ethernet, MPLS (PW).					
Come nodee may have dual rale of a speak bath NCC1 and NCCT2 ate					
Some nodes may have	Some nodes may have dual role e.g., speak both NGF1 and NGF12, etc				

The unknowns

- NGFI work is supposed to eventually cover "5G" but..
- However, the details of the 5G radio are still unknown:
 - Max bandwidth (200MHz?, continuous or CA style?)
 - Radio framing? TTI length? ng-HARQ? FFT block size?
 - Radio system level latency and time-synchronization requirements set by 3GPP..
 - etc..
- Dimensioning & deployment scenarios.. some numbers available in 3GPP TR38.913 but how accurately they reflect real deployments?

Proposal

- Define requirements and functions for a small number of splits (2? 3?).
- Functional splits should aim for simplicity:
 - Identify the most common and important functions that are easy to design "5G ready".
- **Adopt** the three interfaces proposed in this contribution as a baseline:
 - NGFI1 simple split functions, high volume standard networking solutions with little software involvement.
 - NGFI2 more complex split functions, aggregation, converged front- and backhaul, software functions are likely needed.
 - NGFI3 "L2 splits" with full service provider functions.

