

Considerations on synchronization in next generation CRAN fronthaul architecture

Lv Bo, Hu Changjun, Lu Yang CAICT

Compliance with IEEE Standards Policies and Procedures

Subclause 5.2.1 of the *IEEE-SA Standards Board Bylaws* states, "While participating in IEEE standards development activities, all participants...shall act in accordance with all applicable laws (nation-based and international), the IEEE Code of Ethics, and with IEEE Standards policies and procedures."

The contributor acknowledges and accepts that this contribution is subject to

- The IEEE Standards copyright policy as stated in the IEEE-SA Standards Board Bylaws, section 7, <u>http://standards.ieee.org/develop/policies/bylaws/sect6-7.html#7</u>, and the IEEE-SA Standards Board Operations Manual, section 6.1, http://standards.ieee.org/develop/policies/opman/sect6.html
- The IEEE Standards patent policy as stated in the *IEEE-SA Standards Board Bylaws*, section 6, <u>http://standards.ieee.org/guides/bylaws/sect6-7.html#6</u>, and the *IEEE-SA Standards Board Operations Manual*, section 6.3, http://standards.ieee.org/develop/policies/opman/sect6.html

IEEE WG1914 NGFI Jinri Huang, huangjinri@chinamobile.com

[Consideratio	[Considerations on synchronization in next generation CRAN fronthaul architecture] Date: 2016-08-17				
Author(s):					
Name	Affiliation	Phone [optional]	Email [optional]		
Lv Bo	CAICT	+86-18601309707	lvbo@caict.ac.cn		
Hu Changjun	CAICT				
Lu Yang	CAICT	+86-18510550580	luyang@ritt.cn		

Overview

Traditional CRAN fronthaul architecture with CPRI interface

- The link is always online with TDM scheme;
- Frequency & Phase Synchronization between BBU and RRU are easy to be solved under peer to peer scenario with direct fiber connection;
- Synchronization performance index: \pm 2ppb frequency accuracy and \pm 65ns time accuracy.

Next Generation CRAN fronthaul architecture with NGFI interface

- Data are transmitted Statistical multiplexing with Ethernet;
- Nodes are synchronized over Ethernet to take advantage of idle period to make power consumption earth-friendly;
- Under packet switching network Synchronization performance may suffer from PDV(Packet Delay Variance) and will be more challenging;
- Initial discussion on how to support synchronization for NGFI in ITU-T.

Considerations for synchronization

Three Time&frequency errors are considered in next generation CRAN fronthaul architecture on timing distribution

- S1(BBU to BBU) is distributed in backhaul architecture solved in ITU-T G.8271.1 HRM;
- S2(BBU to RRU) is suggested as key issue to be discussed in CRAN fronthaul architecture ;
- S3(RRU to RRU) is so complex and difficult to be controlled but can be converted to S2(illustrated in "Three-cornered hat" method).

Candidate solutions

Candidate schemes are proposed towards time&frequency supporting on "S2" consideration as below

- Option 1: T-BC and T-OC are located in BBU and RRU respectively with G.826x and G.827x series standards supporting compatible with packet networks;
- Option2:Master and slave module are located in something called "remote PTP-head" technology, noted that ToD format and mechanism of link delay compensation should be specified in NGFI standard for further study;
- Option 3:EEC clocks are replaced by PEC clock in T-BC and T-OC, with the advantage of partial supporting for timing in PTP/syncE unaware networks(e.g through switch/router),however this option may be great challenge against PDV and complexity of algorithm for packet filtering, so it is recommended in low priority comparing to option 1 and option 2.

Models and Assumptions

Two models are presented for option 1 and option 2

- some assumptions are made for further simulations based on G.8271.1 and G.8273.2;
- *e<sub>link-assym²* due to dual-direction asymmetry of links between BBU and RRU in model 1 is proposed as key consideration;
 </sub>
- **e**_{link-comp}, due to single-direction compensation accuracy of link from BBU to RRU in model 2 is proposed as key consideration.

Simulation results and Conclusions

Conclusions:

- As for Time synchronization aspects, model 2 is likely to show better performance than model 1 under the same simulation environment;
- As for frequency synchronization aspects, performance of model 1 and model 2 may be matching by EEC cascading;
- Specifications of synchronization performance is suggested for further study(FFS) by metrics such as accuracy,MTIE,TDEV,etc..

Building models via simulink toolbox of Matlab

Simulation results of PTP within 12000s@16Hz

	Accuracy(ns)	stability(ns)	
model	max/TE/	constant TE	peak to peak dynamic TE
model 1	48.41	33.98	18.65
model 2	25.38	47.31	24.73

Simulation results of SyncE within 12000s@20Hz

Summary

Synchronization is focused for next generation CRAN fronthaul networks

- Considerations on synchronization are proposed according to different reference points;
- Errors between BBU and RRU called "S2" are key issues in CRAN fronthaul networks.

Three Candidate schemes are proposed

- In option 1 and 2,PTP can be adopted assisted with SyncE in PHY layer, whereas time and frequency can be delivered uniformly by PTP in option 3;
- Option 2 may be provided with better performance, however ToD format and mechanism of link delay compensation are required for further study;
- Option 3 is recommended in low priority due to great challenge against PDV.

Two functional models are presented for analyzing synchronization performance

- Frequency: stability such as MTIE and TDEV;
- Time: accuracy and stability such as max|TE|,MTIE and TDEV.

Other aspects of synchronization may be studied and discussed later on

- Performance such as holdover, transient response and so on;
- Sync. OAM and PTP profile.

Thanks!

IEEE STANDARDS ASSOCIATION