

Towards a unified BH/FH data plane

Andres Garcia-Saavedra (NEC Labs Europe)
Luca Cominardi (InterDigital Communications)
Thomas Deiss (Nokia Research Center)

Compliance with IEEE Standards Policies and Procedures

Subclause 5.2.1 of the *IEEE-SA Standards Board Bylaws* states, "While participating in IEEE standards development activities, all participants...shall act in accordance with all applicable laws (nation-based and international), the IEEE Code of Ethics, and with IEEE Standards policies and procedures."

The contributor acknowledges and accepts that this contribution is subject to

- The IEEE Standards copyright policy as stated in the IEEE-SA Standards Board Bylaws, section 7, http://standards.ieee.org/develop/policies/bylaws/sect6-7.html#7, and the IEEE-SA Standards Board Operations Manual, section 6.1, http://standards.ieee.org/develop/policies/opman/sect6.html
- The IEEE Standards patent policy as stated in the IEEE-SA Standards Board Bylaws, section 6, <u>http://standards.ieee.org/guides/bylaws/sect6-7.html#6</u>, and the IEEE-SA Standards Board Operations Manual, section 6.3, http://standards.ieee.org/develop/policies/opman/sect6.html

IEEE 1914.1 NGFI Bomin Li Bomin.Li@COMCORES.COM

Towards a unified BH/FH data plane **Date:** 2016-08-22 **Author(s): Phone [optional]** Name **Affiliation Email [optional]** Andres Garcia-Saavedra **NEC Laboratories Europe** InterDigital Luca Cominardi Communications Thomas Deiss Nokia Research Center

An unified transport protocol

- NGFI/Crosshaul's driving paradigms:
 - Packet switching-based transport
 - Flexible BS functional splits between BBUs and RRHs

Split #	Delay req. (ms)	DL BW req. (MB/s)	Others (PDCP/R RC)	RLC	MAC	PHY 2	PHY 1
Split 0 (BH)	30	150			RRH		
Split 1	30*	151	BBU RRH				
Split 2	6	151	BBU		RRH		
Split 3	2	152	BBU		RRH		
Split 4	0.250	452	BBU RRH			RRH	
Split 5 (FH)	0.250	2457.6	BBU				

Table 1: Functional splits analyzed by the Small Cell Forum. LTE. 1 user/TTI, 20 MHz BW, IP MTU 1500B; DL: MCS 28, 2x2 MIMO, 100 RBs, 2 TBs of 75376 bits/subframe, CFI = 1; UP: MCS 23, 1x2 SIMO, 96 RBs, 1 TB of 48936 bits/subframe.

 This blurs BH/FH division: NGFI traffic should be transported across provider networks (Fronthaul+Backhaul=Crosshaul)

^{*} Although Split 1 could run over BH requirements, additional delay due to RRC handing could affect some KPI

An unified transport protocol

The 5G-Crosshaul project aims at developing a 5G integrated backhaul and fronthaul transport network enabling a flexible and software-defined reconfiguration of all networking elements in a multi-tenant and service-oriented unified management environment

- XCF: Encapsulation (PBB-TE/MPLS-TP/...)
- XFE: XCF-enabled forwarding elements

What are its implications in NGFI design?

The 5G-Crosshaul project in a nutshell:

- EC Contribution: 7.942.521€
- Duration: 30 Months (July 2015-Dec 2017)
- 21 Partners from 6 countries

XCF requirements

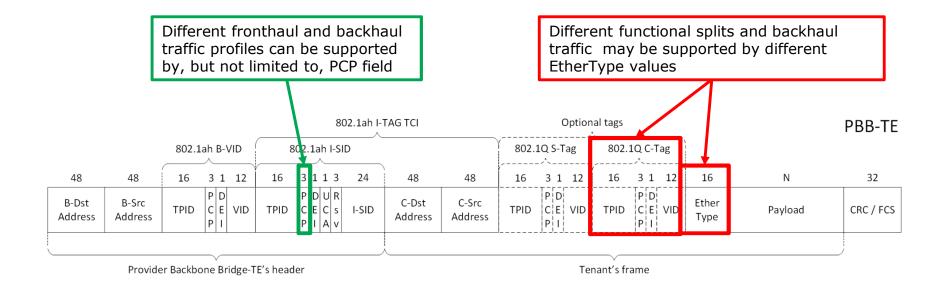
NGFI would presumably create (plain/VLAN-tagged) Ethernet frames

5G-Crosshaul transports NGFI through (circuit/packet-based) provider networks

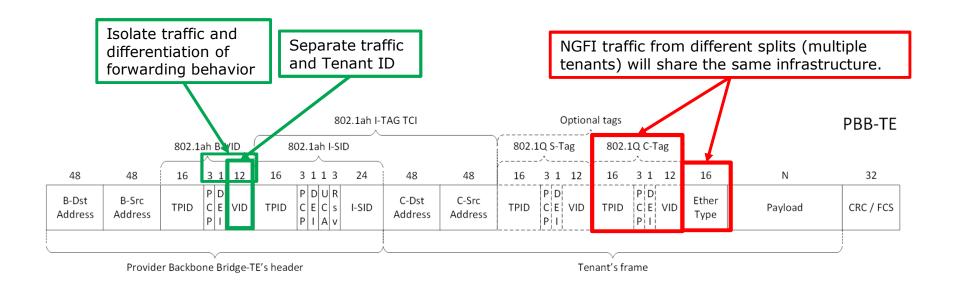
- XCF provides encapsulation, XFEs are the forwarding gears

XCF (provider encapsulation) requirements have an impact on NGFI

Req. #	Requirement				
Functional splits					
R1	Support multiple functional splits				
Multi-tenancy					
R2	Isolate traffic				
R3	Separate traffic				
R4	Differentiation in traffic forwarding				
R5	Multiplexing gain				
R6	Tenant ID				

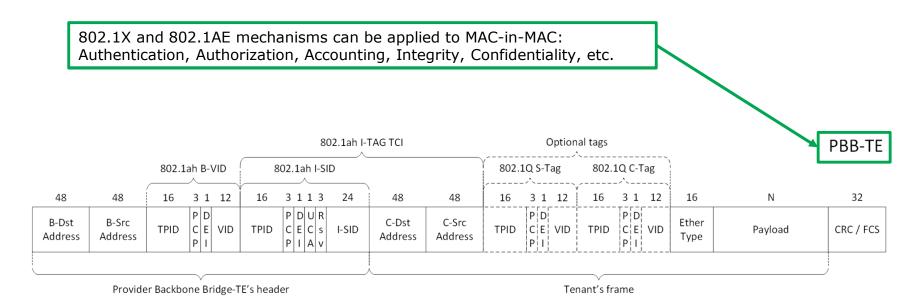

Req. #	Requirement					
Coexistence						
R7	Ethernet- compatible					
R8	Security support					
R9	Compatible with IEEE 1588v2 or IEE 802.1AS					
Transport Efficiency						
R10	Short overhead					
R11	Multi-path					
R12	Flow differentiation					
R13	Class of Service differentiation					

Req. #	Requirement				
Management					
R14	In-band control traffic (OAM)				
Support of multiple media					
R15	802.3				
R16	802.11ad				
R17	mmWave				
Energy Efficiency					
R18	Energy usage proportional to traffic				
Miscellaneous					
R20	No vendor lock in				


PBB-TE (1)

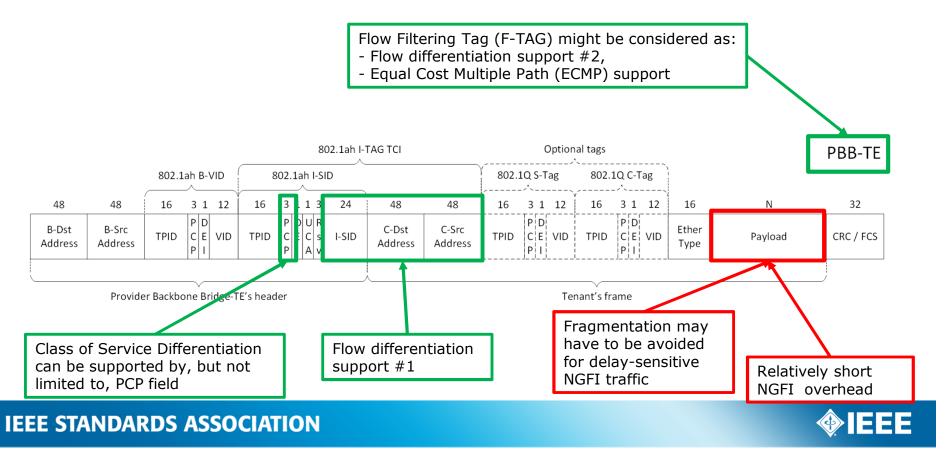
Multiple functional splits

PBB-TE (2)


- Multiple functional splits
- Multi-tenancy

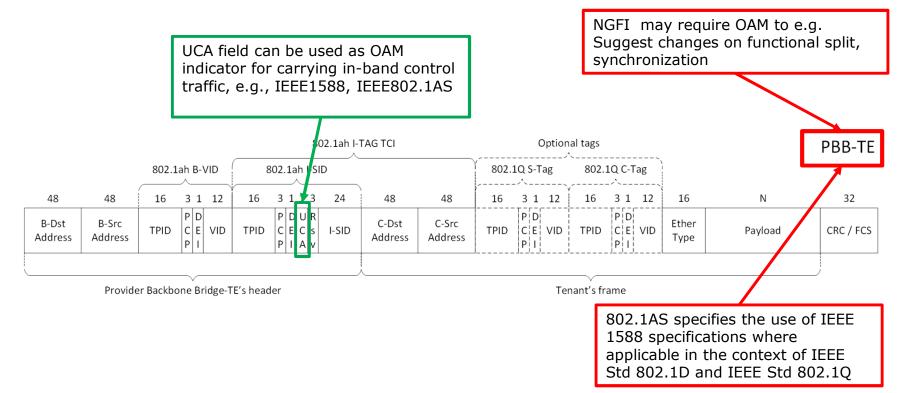
PBB-TE (3)

- Multiple functional splits
- Multi-tenancy
- Coexistence


Payload encryption (802.1AE) may be unfeasible for NGFI delay-sensitive traffic

PBB-TE (3)

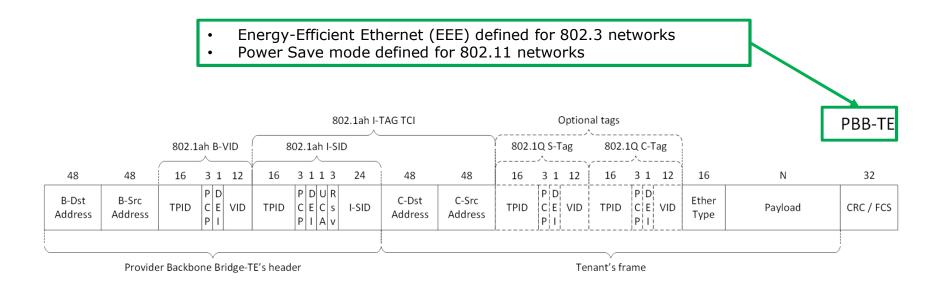
- Multiple functional splits
- Multi-tenancy
- Coexistence


Transport efficiency

PBB-TE (4)

- Multiple functional splits
- Multi-tenancy
- Coexistence

- Transport efficiency
- Management

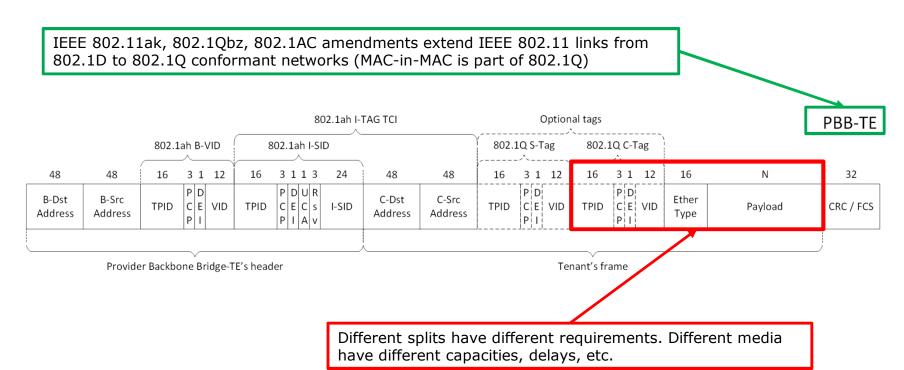


PBB-TE (5)

- Multiple functional splits
- Multi-tenancy
- Coexistence

- Transport efficiency
- Management
- Energy efficiency

EEE or PS may have to be avoided to transport NGFI delay-sensitive traffic


12

Insert Title here Insert Date here

PBB-TE (6)

- Multiple functional splits
- Multi-tenancy
- Coexistence

- Transport efficiency
- Management
- Energy efficiency
- Multiple media technologies

IEEE STANDARDS ASSOCIATION

Traffic flow characteristics of NGFI

Provider encapsulation (PBB/MPLS-TP) may have some requirements on NGFI

Identification

Assumption: separate Ethertype

Required Bandwidth UL/DL

Aligned with number of antenna or amount of user traffic (assuming the second)?

Packet types

- Are all packets equal or are there different types (with different priorities) (antenna data, control, ...)?
- Only 3 bits for traffic classification (similar for PBB-TE and MPLS-TP)

Packet size

- Not too small: avoid too much overhead (PBB-TE header: 46B)
- Not too big: avoid head-of-line blocking
 500B serialization delay: 4us on 1G, 0.4us on 10G

Delay/jitter/packet loss tolerance?

- Relative priority compared to CPRI over Ethernet (1914.3), equal or lower?
- In case a link has been overbooked, what is the impact of congestion on the NGFI? I.e. how flexible is an NGFI traffic flow?

IEEE STANDARDS ASSOCIATION

5G-Crosshaul consortium

