

Latency Requirements and Analysis

Jian Yang, ZTE Corporation IEEE 1914 Working Group Meeting August 22, 2016

Compliance with IEEE Standards Policies and Procedures

Subclause 5.2.1 of the *IEEE-SA Standards Board Bylaws* states, "While participating in IEEE standards development activities, all participants...shall act in accordance with all applicable laws (nation-based and international), the IEEE Code of Ethics, and with IEEE Standards policies and procedures."

The contributor acknowledges and accepts that this contribution is subject to

- The IEEE Standards copyright policy as stated in the IEEE-SA Standards Board Bylaws, section 7, <u>http://standards.ieee.org/develop/policies/bylaws/sect6-7.html#7</u>, and the IEEE-SA Standards Board Operations Manual, section 6.1, http://standards.ieee.org/develop/policies/opman/sect6.html
- The IEEE Standards patent policy as stated in the *IEEE-SA Standards Board Bylaws*, section 6, <u>http://standards.ieee.org/guides/bylaws/sect6-7.html#6</u>, and the *IEEE-SA Standards Board Operations Manual*, section 6.3, http://standards.ieee.org/develop/policies/opman/sect6.html

IEEE [WG Project 1914.1#] [WG 1914] [WG Chair: Jinri Huang]

[Latency requirements and analysis]					
Date: 2016-08-12					
Author(s): Jian Yang					
Name	Affiliation	Phone [optional]	Email [optional]		
Jian yang	ZTE		Yang.jian90@zte.com.cn		

Function Split between central and distributed unit in 3GPP

•3GPP is studying the function split between central unit and distributed unit now.

•8 possible options for split.

 \cdot Considering the latency limitation for URLLC, most options have strict latency requirements for transport network, for example less than 20 μs , only option 1 has no this limitation.

Latency in Transport network

Latency in transport network= Node processing latency + Link latency

- Node processing latency:
 - \checkmark Now in 20 µs to 100 µs
 - ✓ Expecting optimization to a few microseconds in the future
- Link latency: 5 µs/1 km (can't be optimized)

Latency example: suppose the node processing latency is 8 μs
1) 4km distance: 4*5 μs=20 μs
2) 6 nodes and 10 km distance
Latency in transport network= 6*8 μs + 10*5 μs = 98 μs
3) 8 nodes and 20 km distance:
Latency in transport network= 8*8 μs + 20*5 μs = 164 μs

Latency limits the transport network scale.

Different usecase different latency

Table 1: User Experience Requirements

Use case category	User Experienced Data Rate	E2E Latency	Mobility
Broadband access in	DL: 300 Mbps	10 ms	On demand,
dense areas	UL: 50 Mbps		0-100 km/h
Indoor ultra-high	DL: 1 Gbps,	10 ms	Pedestrian
broadband access	UL: 500 Mbps		
Broadband access in	DL: 25 Mbps	10 ms	Pedestrian
a crowd	UL: 50 Mbps		
50+ Mbps everywhere	DL: 50 Mbps	10 ms	0-120 km/h
	UL: 25 Mbps		
Ultra-low cost	DL: 10 Mbps	50 ms	on demand: 0-
broadband access for	UL: 10 Mbps		50 km/h
low ARPU areas			
Mobile broadband in	DL: 50 Mbps	10 ms	On demand, up
vehicles (cars, trains)	UL: 25 Mbps		to 500 km/h
Airplanes connectivity	DL: 15 Mbps per user	10 ms	Up to 1000
	UL: 7.5 Mbps per user		km/h
Massive low-	Low (typically 1-100 kbps)	Seconds to hours	on demand: 0-
cost/long-range/low-			500 km/h
power MTC			
Broadband MTC	See the requirements for the Broadband access in dense areas and 50+Mbps		
	everywhere categories		
Ultra-low latency	DL: 50 Mbps	<1 ms	Pedestrian
,	UL: 25 Mbps		
Resilience and traffic	DL: 0.1-1 Mbps	Regular	0-120 km/h
surge	UL: 0.1-1 Mbps	communication: not	
		critical	
Ultra-high reliability &	DL: From 50 kbps to 10 Mbps;	1 ms	on demand: 0-
Ultra-low latency	UL: From a few bps to 10 Mbps		500 km/h
Ultra-high availability	DL: 10 Mbps	10 ms	On demand, 0-
& reliability	UL: 10 Mbps		500 km/h
Broadcast like	DL: Up to 200 Mbps	<100 ms	on demand: 0-
services	UL: Modest (e.g. 500 kbps)		500 km/h

For transport network , we need identify the low latency service to allocate the special resource to forward with high priority.

IEEE STANDARDS ASSOCIATION

Insert Title here

Transport nodes optimization for latency processing

- Indentify the low latency services and forward them with express forwarding processing.
- If treat all the services as low latency services, transport nodes will be high cost.

Suggestions

- 1. Latency limits the transport network scale. So if we need a middle scale fronthaul network (10km, 6 transport nodes), the transmission latency is no less than 100 μ s.
- 2. For better processing, the transport network nodes need to be told which service is the low latency.

