ISTITUTO DI TECNOLOGIE DELLA COMUNICAZIONE, DELL'INFORMAZIONE E DELLA PERCEZIONE

Scuola Superiore Sant'Anna

Requirements for 5G Fronthaul

L. Valcarenghi, K. Kondepu, F. Giannone, A. Marotta*, P. Castoldi

Scuola Superiore Sant'Anna, Pisa, Italy

Università degli studi dell'Aquila

IEEE SA P1914.1 presentation Conference Call 30/11/2016

Outline

- Objective
- Proposed functional splits
- Simulation scenario
- Overhead computation
- Results
- Conclusions

Objective

 Evaluate the communication overhead between UE and BBU for different functional splits

Proposed functional splits – 3GPP

LTE-A Pro Protocol Stack

ROHC=robust header compression ARQ=Automated Repreat reQuest HARQ=Hybrid Automated Repeat reQuest

Fronthaul capacity requirements: previous work (1)

RRC: broadcast of System Information (i.e., System Information Blocks SIB); paging; mobility functions ...

ROHC=robust header compression **ARQ=Automated Repreat reQuest** HARQ=Hybrid Automated Repeat reQuest

Fronthaul capacity requirements: previous work (2)

- Split A
 - Forwards the time-domain received signals that have been downconverted to the baseband and analogto-digital (AD) converted (indicated by block RF/AD) (CPRI approach)
- Split B
 - Removes the Cyclic Prefix (CP) and transforms the Rx signal to frequency-domain using fast Fourier transformation (FFT), guard subcarriers can be removed (block CP/FFT).
- Split C
 - Only the resource elements (REs) remain after RE demapping (block RE Demap) and have to be forwarded to the cloud-platform (If only a part of the RE are actually utilized by the user equipment (UE) in a cell)
- Split D
 - The receive processing (block Rx Proc) per user consists of equalization in frequency domain, inverse discrete Fourier transformation (IDFT), MIMO receive processing, and demapping
- Split E
 - During forward error correction (FEC) decoding (block DEC), data bits are recovered from the received symbols and redundant bits are removed, resulting in the pure MAC payload at the decoder output.

Source: Dirk Wübben *et al.*, "Benefits and Impact of Cloud Computing on 5G Signal Processing", 7 Scuola FEEE SIGNAL PROCESSING MAGAZINE, Nov. 2014 © 2016 Scuola Superiore Sant'Anna

Our study

RRC: broadcast of System Information (i.e., System Information Blocks SIB); paging; mobility functions ... Radio Bearers Radio Bearers ROHC ROHC ROHC ROHC ROHC ROHC PDCP **PDCP** Security Security Security Security Security Securtiy L2 Segm. Segm. Segm. Segm. Segm. Segm. RLC RLC ARQ ARQ ARQ ARQ ARQ PCCH ARQ BCCH Logical Channels Logical Channels Scheduling / Priority Handling Scheduling / Priority Handling MAC MAC Multiplexing UE₁ Multiplexing UE Multiplexing HARQ HARQ HARQ **Transport Channels Transport Channels** PHY

Downlink

Uplink

ROHC=robust header compression **ARQ=Automated Repreat reQuest** HARQ=Hybrid Automated Repeat reQuest

Downlink Packet Encapsulation

Scuola Superiore Sant'Anna

Adaptation from

A. Larmo, M. Lindström, M. Meyer, G. Pelletier, J. Torsner and H. Wiemann, "The LTE link-layer design," A. in *IEEE Communications Magazine*, vol. 47, no. 4, pp. 52-59, April 2009.

© 2016 Scuola Superiore Sant'Anna

Utilized tool OAI Software Stack

- Implements LTE Rel10 Access Stratum (eNB & UE) and EPC (MME, S+P-GW, HSS)
- All the stack (incl. PHY) runs entirely on a PC in real-time operating system (RTAI, Xenomai, low-latency kernel)
- Wireshark/tshark

PERCEZIONE

Scuola Superiore Sant'Anna

Setup and Performance Evaluation Parameters

					Parameter	Value	
				1	Simulation Duration	100000 TTIs	100s
BBO	BBO	BBO	BBO		Duplexing Mode	FDD	
PDCP	RRC	RRC	RRC		PHY Layer Abstraction	NO	1
BLC	PUCP	PDCP			# eNBs	1	1
MAC	NLC		PDCP		# UEs	1	1
		PIC	RLC		Mobility	STATIC	1
	MAC	MAC	MAC	Inter denarture	Payload Size	200 bytes	1
PHY	PHY	PHY	PHY	time	IDT	1 ms	1
RRH	PPH	RRH	RRH	time	Offered load	1.6Mb/s	Small paalsat
(((0)))	ABH O	AAT	I IIIII		Traffic Type	SCBR	Sinan packet
					TX mode	1 (SISO)	CBR
MAC Solit	RIC Solit	BDCB Salia	PPC Salit		Carrier Bandwidth	5 MHz	
wine spire	Rec Spin	PDCP Split	KKC Split		Multipath channel simulation	AWGN	
Fronthaul Interface					Distance (D)	370m]
C-nlane overhead (at each laver) Uplink traffic only							

- *C-plane overhead* (at each layer)
 - the overall amount of control data and overhead exchanged in bytes including System Information Blocks (SIBs)
- *U-plane overhead* (at each layer)
 - number of overhead bytes used to transport the considered application data
- C-plane functional split overhead (CFSO)
 - the sum of C-plane overhead of each layer residing at the BBU based on the implemented functional split option
- CFSO percentage

Sant'Anna

- the ratio between CFSO and the offered load.
- Overhead capacity consumption

the ratio between the overhead and the experiment duration for C-plane 11 Scuola Superiore overhead, U-plane overhead, and CFSO © 2016 Scuola Superiore Sant'Anna

Results: overhead and overhead capacity

- RRC contribute more number of bytes to the C-plane overhead (periodic transmission of SIB ٠ information)
- PDCP and RLC have less contribution to C-plane overhead because these layers are involved ٠ only in transportation of DCCH for non-access stratum (NAS)-evolved packet core (EPC) access stratum (AS)-evolved packet core (EPC) connection
- RLC has other additional C-plane overhead to specify signalling radio bearers (SRB) for RRC ٠ and NAS signalling messages
- The C-plane MAC overhead includes MAC PDU header, buffer status report (BSR), and power ٠ headroom report (PHR) of MAC control elements
- Layer contributions are separate ٠

LAYER	overh	nead	overhead capacity		Logical/Transport
	[bytes]		consump	tion [b/s]	Channels
	C- plane	U-plane	C-plane	U-plane	
RRC	473518	-	37881.44	-	BCCH, CCCH, DCCH
PDCP	115	45005	9.20	3600.40	DCCH
RLC	182	18002	14.56	1440.16	DCCH, SRB1
MAC	231358	4112279	18508.64	328982.45	BCH, SCH

Results: C-plane functional split overhead capacity and percentage

 Bottom layer sums the contribution by upper layers

Conclusions

- Functional split overhead evaluation
- Functional split requirements
 - PDCP and RLC have a slight impact on the functional split requirements
 - From MAC above
 - Capacity required for transporting both user and control data are limited to slightly less than one Megabit per second.
 - The limiting requirement for the fronthaul is the latency which can vary from units of milliseconds (PHY split) to tens of seconds (RRC split)

thank you!

email: luca.valcarenghi@sssup.it

Fronthaul capacity requirements

PARAMETER	SYMBOL	VALUE
BANDWIDTH	В	20 MHz
SAMPLING FREQUENCY	fs	30.72 MHz
OVERSAMPLING FACTOR	No	2
NUMBER OF USED SUBCARRIERS	N _{Sc}	1,200
SYMBOL DURATION	Ts	66.6 µs
QUANTIZATION/SOFT BITS PER I/Q	N _Q	10
RX ANTENNAS	N_{R}	2
SPECTRAL EFFICIENCY	S	3 bit/cu
ASSUMED RB UTILIZATION	η	50%

Split	Required bandwidth	In % of a)
a) I/Q Forwarding	2,457 Mbps	100.0 %
b) Subframe forwarding	720 Mbps	29.3 %
c) Rx Data forwarding	360 Mbps	14.7 %
d) Soft-Bit forwarding	180 Mbps	7.3 %
e) MAC Data	27 Mbps	1.1 %

Source: A. Maeder, M. Lalam, A. De Domenico, E. Pateromichelakis, D. Wubben, J. Bartelt, R. Fritzsche, P. Rost, "Towards a flexible functional split for cloud-RAN networks," in Networks and Communications (EuCNC), 2014 European Conference on , vol., no., pp.1-5, 23-26 June 2014 16

Fronthaul latency requirements

	Timer	Short description	Max Value
Y	Subframe	Physical subframe length	1 ms (fix)
Н	Frame	Physical frame length	10 ms (fix)
MAC	HARQ RTT Timer	When an HARQ process is available	8 ms (fix)
	t-PollRetransmit	For AM RLC, poll for retransmission @tx side	500 ms
RLC	t-Reordering	For UM/AM RLC, RLC PDU loss detec- tion @rx side	200 ms
	t-StatusProhibit	Prohibit generation of a status report @rx side	500 ms
PDCP	discardTimer Discard PDCP SDU / PDU if expiration or successful transmission		Infinity
	TimeToTrigger	Time to trigger of a measurement report	5.12 s
RRC	T300	RRCConnectionRequest	2 s
	T301	RRCConnectionReestablishmentRequest	2 s
	T304	RRCConnectionReconfiguration	2 s or 8 s
	T310	Detection of physical problem (successive out-of-sync from lower layers)	2 s
	T311	RRC connection reestablishment (E-UTRA or another RAT).	30 s

ISTITUTO DI TECRILORIE DELLA COMUNICAZIONE E DELLINIFORMAZIONE F DELLA PERCEZIONE Scuola Superiore Sant'Anna Source: Common Public Radio Interface (CPRI) Specification V6.1. [Online] Available: http://www.cpri.info/spec.html, Tech. Rep., 2014

© 2016 Scuola Superiore Sant'Anna