

Architecture considerations

Aleksandra Checko, MTI Andrijana Popovska Avramova, Foxconn Morten Høgdal, Foxconn

IEEE 1914 f2f meeting, Beijing, CN 01/17-19/2017

Compliance with IEEE Standards Policies and Procedures

Subclause 5.2.1 of the *IEEE-SA Standards Board Bylaws* states, "While participating in IEEE standards development activities, all participants...shall act in accordance with all applicable laws (nation-based and international), the IEEE Code of Ethics, and with IEEE Standards policies and procedures."

The contributor acknowledges and accepts that this contribution is subject to

- The IEEE Standards copyright policy as stated in the IEEE-SA Standards Board Bylaws, section 7, <u>http://standards.ieee.org/develop/policies/bylaws/sect6-7.html#7</u>, and the IEEE-SA Standards Board Operations Manual, section 6.1, http://standards.ieee.org/develop/policies/opman/sect6.html
- The IEEE Standards patent policy as stated in the *IEEE-SA Standards Board Bylaws*, section 6, <u>http://standards.ieee.org/guides/bylaws/sect6-7.html#6</u>, and the *IEEE-SA Standards Board Operations Manual*, section 6.3, http://standards.ieee.org/develop/policies/opman/sect6.html

IEEE 1914 Next Generation Fronthaul Interface Jinri Huang, huangjinri@chinamobile.com

Architecture considerations							
Date: 2017-01-10							
Author(s):							
Name	Affiliation	Phone [optional]	Email [optional]				
Andrijana Popovska Avramova	Foxconn		Andrijana.Avramova @mtigroup.com				
Aleksandra Checko	MTI		Aleksandra.Checko @mtigroup.com				
Morten Høgdal	Foxconn		Morten.Hoegdal @mtigroup.com				

Introduction

Class	Sub Class (FFS)	Priority Level (FFS)	Latency upper bound requirement (FFS)	Throughput requirement (FFS)	Reserved	informative
control & management	synchronization	0		Low BW		
	Low latency RAN control-plane	1		Low BW		
data-plane	Subclass1	2		R3_low - R3_high		3GPP model Option 6,7,8
	Subclass_2	3		R4_low - R4_high		3GPP model Option 4,5
	Subclass_3	4		R5_low - R5_high		3GPP model Option 1,2,3
Transport NW control & management		?	?	Low BW		
Reserved						

Way forward [1]:

- Need to fill in the <u>transport class table</u>
 - What are they? What are their properties? Are they technology-specific?
- <u>Requirements</u> (following Prof. Choi's contribution, Transport requirements for different splits (ATT))
- Need <u>architecture</u> (following Jouni's contribution)

[1] 201610 IEEE 1914 f2f meeting summary

Agenda

- Architectural considerations contribution to the discussion
 - Towards requirements definition
 - Configuration of traffic classes towards meeting latency targets

ARCHITECTURAL CONSIDERATIONS

Data-plane related

Architecture considerations

Distance for p2p links

• Most stringent requirement for subclass 1:

User-plane eMBB 4ms -> FH 100us = 20 km (propagation only)

User-plane URLLC 0.5ms -> FFS

• Most stringent requirement for subclass 2:

User-plane eMBB 4ms -> assuming FH less than 100us = less than 20km (propagation only)

User-plane URLLC 0.5ms -> FFS

• Most stringent requirement for subclass 3:

User-plane eMBB 4ms -> assuming FH 1.5ms-10ms = 300-2000 km (propagation only) User-plane URLLC 0.5ms -> FFS

Topology changes the maximum distance

Topology and # of nodes

- All topologies should be considered
 - Ring/chain topology: all nodes add up to the delay
 - Tree/point-to-multipoint: aggregation nodes add to the delay
- The # of nodes is dependent on topology and allowed distance between nodes

of nodes impact on distance

- Assuming processing delay at each node of 3usec.
- Assuming ring/chain topology
- What is the maximum distance between ingress and egress node?

distance (km) for 4ms eMBB user plane latency as a f(#nodes)

	Number of intermediate nodes						
	0	10	15	20	50		
Subclass 1	20	14	11	8	Na		
Subclass 2	20	14	11	8	Na		
Subclass 3	300	294	291	288	270		

Traffic multiplexing

Options 1-5: multiplexing gain possible – bursty traffic

- **Subclass 1** (Options 1,2,3) **higher** multiplexing gain
- **Subclass 2** (Options 4,5) **lower** multiplexing gain

Subclass 3 (Options 6,7,8): small/no multiplexing gain

- 6-7.3 dependent on user data rate
- 7.1, 7.2 and 8 independent on user data rate

Hybrid splits supported at one physical node – traffic multiplexing at each stage (FH; MH; BH)

Configuration of traffic classes towards meeting latency targets

1. Which classes can be preempted before others?

Should priorities from NGFI classes of service be used?

2. How to prioritize

- between fronthaul traffic classes: should priorities from NGFI classes of service be used?

- with backhaul/midhaul (shared FH/MH and MH/BH): FH>MH>BH?
- 3. Is there a need for source scheduling requirements?
- for streams with the same priority (e.g. the same class)

Summary

- Architectural considerations
 - Requirements
 - Distance
 - Topologies
 - Number of nodes
 - Traffic multiplexing
 - Configuration of traffic classes towards meeting latency targets

