

Aleksandra Checko, MTI/Foxconn

IEEE 1914 f2f meeting, Dallas, TX, US 04/19-21/2017

Compliance with IEEE Standards Policies and Procedures

Subclause 5.2.1 of the *IEEE-SA Standards Board Bylaws* states, "While participating in IEEE standards development activities, all participants...shall act in accordance with all applicable laws (nation-based and international), the IEEE Code of Ethics, and with IEEE Standards policies and procedures."

The contributor acknowledges and accepts that this contribution is subject to

- The IEEE Standards copyright policy as stated in the IEEE-SA Standards Board Bylaws, section 7, http://standards.ieee.org/develop/policies/bylaws/sect6-7.html#7, and the IEEE-SA Standards Board Operations Manual, section 6.1, http://standards.ieee.org/develop/policies/opman/sect6.html
- The IEEE Standards patent policy as stated in the *IEEE-SA Standards Board Bylaws*, section 6, http://standards.ieee.org/guides/bylaws/sect6-7.html#6, and the *IEEE-SA Standards Board Operations Manual*, section 6.3, http://standards.ieee.org/develop/policies/opman/sect6.html

IEEE 1914 Next Generation Fronthaul Interface Jinri Huang, huangjinri@chinamobile.com

Throughput requirements							
Date: 2017-04-10							
Author(s):							
Name	ame Affiliation		Email [optional]				
Aleksandra Checko	MTI/Foxconn		Aleksandra.Checko @mtigroup.com				

Background

Class	Sub Class (FFS)	Priority Level (FFS)	Latency upper bound requirement (FFS)	Throughput requirement (FFS)	Reserved	informative
control & management	synchronization	0		Low BW		
	Low latency RAN control-plane	1		Low BW		
data-plane	Subclass1	2		R3_low - R3_high		3GPP model Option 6,7,8
	Subclass_2	3		R4_low - R4_high		3GPP model Option 4,5
	Subclass_3	4		R5_low - R5_high		3GPP model Option 1,2,3
Transport NW control & management		?	?	Low BW		
Reserved						

Way forward after Oct16 f2f [1]:

- Need to fill in the <u>transport class table</u>
- Requirements (following Prof. Choi's contribution, Transport requirements for different splits (ATT))

Contribution from Feb 2017 telco:

Proposal to use <u>latency</u> requirement as primary factor for CoS specification, <u>instead of throughput [2]</u>

[1] 201610 IEEE 1914 f2f meeting summary

[2] tf1_1702_cai_tazi_NGFI_COS_specification_1.pdf

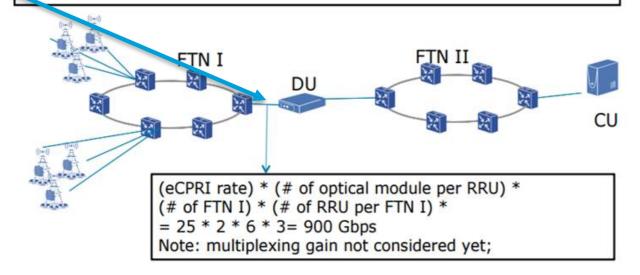
IEEE STANDARDS ASSOCIATION

Thoughts on throughput requirements

- Delay requirement can only be met is required throughout can be accommodated
 - Delay is more critical in the context of CoS definition
- Still, there is a value in defining realistic deployment scenarios
 - 1914.1 PAR: "5.2 Scope: This standard specifies: (...)
 - 2) Requirements and definitions for the fronthaul networks, including data rates
- Proposal: Fronthaul dimensioning tool
- To facilitate analysis on deployment scenarios
- Invitation to share views on parameters and their values in foreseen deployment scenarios to be included in the standard (informative)

IEEE

Considered architecture

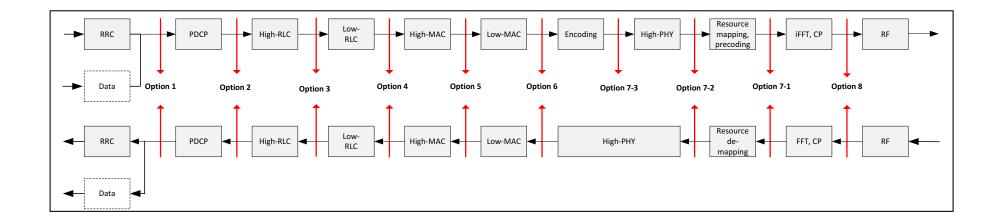

From IEEE 1914, tf1_1701_huang_two-level-architecture_2.pdf

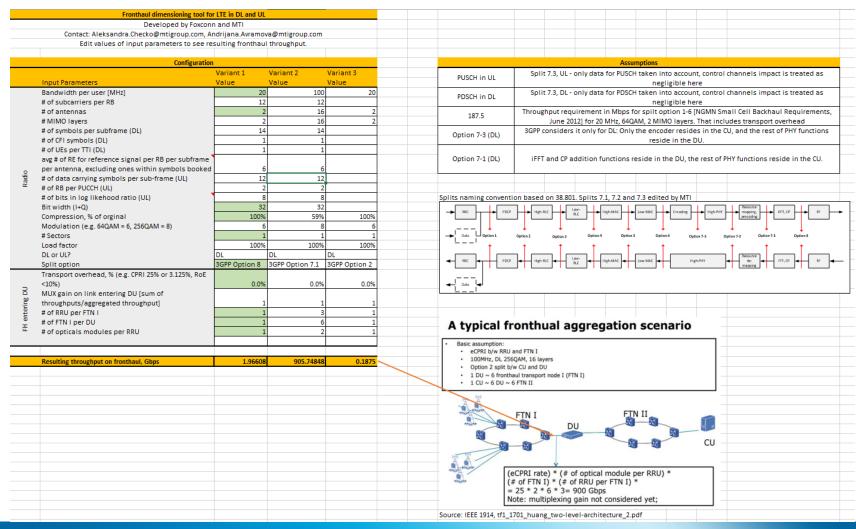
Calculations focused

here:

A typical fronthual aggregation scenario

- · Basic assumption:
 - · eCPRI b/w RRU and FTN I
 - 100MHz, DL 256QAM, 16 layers
 - Option 2 split b/w CU and DU
 - 1 DU ~ 6 fronthaul transport node I (FTN I)
 - 1 CU ~ 6 DU ~ 6 FTN II




Throughput requirements 2017-04-10

Considered functional splits

Splits naming convention based on 38.801. Splits 7.1, 7.2 and 7.3 edited by MTI

Presentation of the tool

IEEE STANDARDS ASSOCIATION

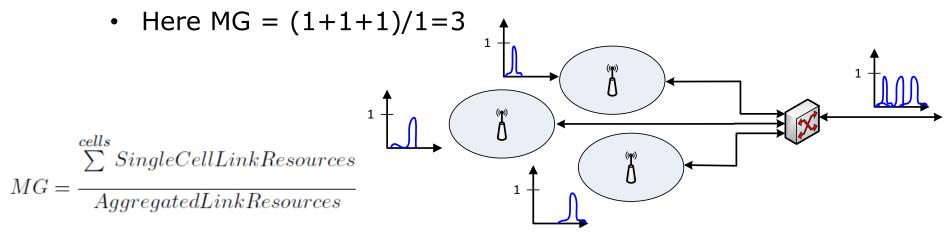
Throughput requirements 2017-04-10

Exemplary configurations

		Configuration	Configuration								
		Variant 1	Variant 2	Variant 3	Variant 4	Variant 5					
	Input Parameters	Value	Value	Value	Value	Value					
	Bandwidth per user [MHz]	100	100	100	100	100					
	# of subcarriers per RB	12	12	12	12	12					
	# of antennas	16	8	8	8	8					
	# MIMO layers	16	8	8	8	8					
	# of symbols per subframe (DL)	14	14	14	14	14					
	# of CFI symbols (DL)	1	1	1	1	1					
	# of UEs per TTI (DL)	1	1	1	1	1					
	avg # of RE for reference signal per RB per subframe										
	per antenna, excluding ones within symbols booked	6	6	1		<u> </u>					
Radio	# of data carrying symbols per sub-frame (UL)	12	12	12	12	12					
~	# of RB per PUCCH (UL)	2	2	2	2	2					
	# of bits in log likehood ratio (UL)	8	8	8	8	8					
	Bit width (I+Q)	32	32	32	32	32					
	Compression, % of orginal	59%	100%	100%	100%	100%					
	Modulation (e.g. 64QAM = 6, 256QAM = 8)	8	8	8	8	8					
	# Sectors	1	1	1	1	1					
	Load factor	100%	100%	100%	100%	100%					
	DL or UL?	DL	DL	DL	DL	DL					
	Split option	3GPP Option 7.1	3GPP Option 7.1	3GPP Option 7.3	3GPP Option 5	3GPP Option 2					
H entering DU	Transport overhead, % (e.g. CPRI 25% or 3.125%, RoE										
	<10%)	0.0%	0.0%	0.0%	0.0%	0.0%					
	MUX gain on link entering DU [sum of										
	throughputs/aggregated throughput]	1	1	1	1	1					
	# of RRU per FTN I	1	1	1	1	1					
	# of FTN I per DU	1	1	1	1	1					
	# of opticals modules per RRU	1	1	1	1	1					
	Resulting throughput on fronthaul, Gbps	25.15968	21.504	4.736	5	5					

100 MHz 16 or 8 antennas

Compression/ bit width 256 QAM


IEEE STANDARDS ASSOCIATION

Throughput requirements 2017-04-10

Needs for D0.2/D0.3

- Unified formula for throughput calculations
 - Proposal to use formulas from Fronthaul dimensioning tool
- Unified definition of multiplexing gain
 - Proposal: [sum of throughputs/aggregated throughput] satisfying delay requirements

Bandwidth vs data rate vs throughput

Agreement is needed on terminology:

- 3GPP bandwidth of data transmission
- SCF bandwidth interchanged with throughput
- NGFI whitepaper bandwidth
- IEEE 1914 PAR data rates of network
- IEEE 1914.1 bandwidth and throughput

Proposal:

- Data rate of a link in the network
- Bandwidth of RF channel
- Throughput actual transfer. But on application level?

IEEE

Strawman poll #_4_

- Terminology: use throughput in definitions saying it is a transport throughput unless otherwise specified in IEEE 1914.1 standard
- Mover: Aleksandra Checko
- Seconder: Richard Maiden
- Yes: _19_ No: _0_ Abstain: _2_ (technical motion needs >= 2/3)

Strawman poll #_5_

- Do we need more discussion on: "Remove throughput requirements from NGFI transport class of service definition. Refer to throughput as informative"?
- Mover: Aleksandra Checko
- Seconder: Stuart Whitehead
- Yes: _3__ No: _8__ Abstain: _8__ (technical motion needs >= 2/3)

Motion #_5_ (04/20/2017)

- Remove the throughput requirement column from Table 2 in IEEE 1914.1 D0.2 page 19.
- Mover: Aleksandra Checko
- Seconder: Stuart Whitehead
- Yes: _11_ No: _0_ Abstain: _0_ (technical motion needs >= 2/3)

Motion passed, chair did not vote

Motion #_4_

- In an appendix, show formulas and parameter definitions from tf1_1704_Checko_FHDimensioning_1.xlsm as a baseline for throughput calculations. Add informative reference that LTE calculations are as in SCF 159 document and are extended with fronthaul parameters.
- Mover: Aleksandra Checko
- Seconder: Tony Tam
- Yes: _12_ No: _0_ Abstain: _0_ (technical motion needs >= 2/3)

Motion passed, chair did not vote

Summary

- Proposal is to provide informative realistic throughput requirements, to be included in the standard
- Contributions to values of parameters to define deployment scenarios are welcome

Thank you

