IEEE STANDARDS ASSOCIATION

Transport Network Slicing

Tony Tam Fujitsu Network Communications

April 19-21, 2017 IEEE 1914.1 TF

Compliance with IEEE Standards Policies and Procedures

Subclause 5.2.1 of the *IEEE-SA Standards Board Bylaws* states, "While participating in IEEE standards development activities, all participants...shall act in accordance with all applicable laws (nation-based and international), the IEEE Code of Ethics, and with IEEE Standards policies and procedures."

The contributor acknowledges and accepts that this contribution is subject to

- The IEEE Standards copyright policy as stated in the IEEE-SA Standards Board Bylaws, section 7, <u>http://standards.ieee.org/develop/policies/bylaws/sect6-7.html#7</u>, and the IEEE-SA Standards Board Operations Manual, section 6.1, http://standards.ieee.org/develop/policies/opman/sect6.html
- The IEEE Standards patent policy as stated in the *IEEE-SA Standards Board Bylaws*, section 6, <u>http://standards.ieee.org/guides/bylaws/sect6-7.html#6</u>, and the *IEEE-SA Standards Board Operations Manual*, section 6.3, http://standards.ieee.org/develop/policies/opman/sect6.html

IEEE 1914 Next Generation Fronthaul Interface Jingri Huang, Huangjinri@chinamobile.com

Transport Network Slicing							
Date: 2017-04-19							
Author(s):							
Name	Affiliation	Phone [optional]	Email [optional]				
Tony Tam	Fujitsu Network Communications		tony.tam@us.fujitsu.c om				

Agenda

- □ 3GPP Network Architecture and Network Slicing
- □ E-2-E Network Slicing Across Mobile (UE-RAN-Core) and Transport Network
- □ Transport Network Slicing Requirements and Architecture

5G System Architecture

3GPP TS 23.501

EEE

5G System Architecture Terms

- Authentication Server Function (AUSF)
- Core Access and Mobility Management Function (AMF)
- Data network (DN), e.g. operator services, Internet access or 3rd party services
- Structured Data Storage network function (SDSF)
- Unstructured Data Storage network function (UDSF)
- Network Exposure Function (NEF)

- NF Repository Function (NRF)
- Policy Control function (PCF)
- Session Management Function (SMF)
- Unified Data Management (UDM)
- User plane Function (UPF)
- Application Function (AF)
- User Equipment (UE)
- (Radio) Access Network ((R)AN)

5G System Service-Based Architecture

3GPP TS 23.501

5G Functional Network Architecture

Functional Network Architecture

This is NOT (yet?) the 3GPP 5G System Architecture.

This is a snapshot of the ongoing work where the here shown and other principles and network functions are under discussion.

© 3GPP, Second Global 5G Event, 9-10 November 2016, Rome, Italy

IEEE STANDARDS ASSOCIATION

A GLOBAL INITIATIVE

5G System Architecture – Fronthaul Network

3GPP TS 23.501

5G E-2-E Network Slicing

- E-2-E Network Slicing is a Team Work and a coherent one including Mobile Fronthaul and Backhaul
- □ Fronthual is intertwined within RAN

IEEE STANDARDS ASSOCIATION

5G Network Slicing

Control Plane and User Plane

Figure 6.1.3.1-1 Sharing a set of common C-plane functions among multiples Core Network Instances

- Mobile Slice (UE-RAN-CORE) and *Transport* Network Slice Creation/Composition, Modification, Deletion and Selection
- □ Mobile (UE-RAN-CORE) Control Plane and User Plane Separation and Separate Transport Channels

5G E-2-E Network Slicing

Time Sensitive Ethernet Session

- Time Sensitive Ethernet Session across Mobile (UE-RAN-CORE) Slice and *Transport* Network Slice
- Connection Oriented Session and Connectionless Session

Figure 6.1.2.1.1-1: Network with n Tenants and m possible Slice Types (with UEs which can only access a single tenant slices) 3GPP TR 23.799

Actual agreements are in section 8 or in TS

- □ Time Sensitive Ethernet KPIs across Mobile (UE-RAN-Core) Slice and Transport Slice
- □ E-2-E KPI budget allocation across Mobile (UE-RAN-Core) Slice and Transport Slice
- Currently not yet addressed by any SDOs
- □ 3GPP SA5 group proposing to work with outside groups for the Transport Network

5G E-2-E Network Slicing Architecture

Fronthaul is inside the RAN Slice between RRH and BBU or between RRH & DU and DU and CU(BBU)

Backhaul is between RAN and Mobile Core Network or between RAN and Wireline Network for Wireline Services

5G E-2-E Network Slicing Examples

- Each Slice has its own requirements and KPIs
- Transport Network shall have corresponding slice to meet the Mobile Slice E-2-E requirements and KPIs

Network Slicing Architecture– Control & User Plane

- **G** 5G Network supports separation of Control Plane and User Plane
- Separate Transport Network for Control Plane and User Plane with different requirements and KPIs
- User Plane to Mobile Core Network for Mobile Services or to Wireline Network for Wireline Services

Network Slicing Architecture - Layers

- Network Slicing Layers Services Layer, Network Slice Layer and Resource Layer
- Network Management and Orchestration Plane The Conductor
- Transport Network shall have the same Service, Network Slice and Resource Layers
- Network Management and Orchestration Directs both Mobile Network Slices and Transport Network Slices

Network Slicing Architecture - Instances

- Network Slicing Layers Services Layer, Network Slice Layer and Resource Layer
- Transport Network Management and Orchestration Plane The Conductor
- Transport Network shall have the same Service, Network Slice and Resource Layers
- Transport Network Management and Orchestration Directs Transport Network Slice

Network Slicing Architecture - Transport

- Network Slicing Layers Services Layer, Network Slice Layer and Resource Layer
- □ Network Management and Orchestration Plane The Conductor
- Transport Network shall have the same Service, Network Slice and Resource Layers
- □ Network Management and Orchestration Directs both Mobile Network Slices and Transport Network Slice

Network Slicing - Services

Functional Splits options being discussed in 3GPP, only Option 2 is standardized today

Network Slicing - KPIs

MEF 22.2 Performance Tier (PT) objectives One way CPOs across PT 1 (metro) for Point-to-Point Mobile Backhaul service

	Ingress Bandwidth Profile(2)	One Way CPO for Mobile Backhaul Service {S, CoS ID, PT}									
CoS Name		FD	MFD	IFDV	FDR	FLR	Α	L	В	FPP	СРМ
Very High (H ⁺)	CIR>0 EIR=0	≤10 ms	$\leq 7 ms$	N/S	A_{FDR}	≤.01 % (i.e., 10 ⁻⁴)	$\geq A_{Avail}$	$\leq A_{HLI}$	≤ <i>A</i> chli	(3)	(4)
High (H)	CIR>0 EIR≥0	≤10 ms	$\leq 7 ms$	$\leq 3 ms$	$\leq 5 ms$	≤.01 % (i.e., 10 ⁻⁴)	TBD	TBD	TBD	(3)	(4)
Medium (M)	CIR>0 EIR≥0	$\leq 20 ms$	≤13 ms	$\leq 8 ms \ or$ N/S	$\leq 10 \text{ ms}$ or N/S	≤.01 % (i.e., 10 ⁻⁴)	TBD	TBD	TBD	N/S	N/S
Low (L)	$CIR \ge 0$ $EIR \ge 0(1)$	<i>≤</i> 37 ms	≤28 ms	N/S	N/S	$\leq 1 \%$ (<i>i.e.</i> , 10^{-3})	TBD	TBD	TBD	N/S	N/S

Build on MEF 22.2 PT objectives framework for 5G Transport and Transport Slice KPIs

Adding Slice Layer

Network Slicing - KPIs

MEF 22.2 One Way CPO for Mobile Backhaul Service with Tight Radio Coordination – constrained PT1 {S, CoS ID, PT}

C C N	Ingress Bandwidth Profile**	One Way CPO for Mobile Backhaul Service with tight radio coordination {S, CoS ID, PT}								
CoS Name		FD	MFD	IFDV	FDR	FLR	Availability	L	В	
High (H)	CIR>0 EIR≥0	$\leq l ms$	<i>≤</i> 0.7 <i>ms</i>	≤0.3 ms	≤0.5 ms	≤.01 % (i.e., 10 ⁻⁴)	$TBD \\ \geq A_{Avail}$	$TBD \\ \geq A_{HLI}$	$TBD \\ \geq A_{CHLI}$	
Medium (M)	CIR>0 EIR≥0	≤2.9 ms	$\leq 2 ms$	$\leq 0.9 \text{ ms or}$ N/S	$\leq l ms or$ N/S	≤.01 % (i.e., 10 ⁻⁴)	$TBD \\ \geq A_{Avail}$	$TBD \\ \geq A_{HLI}$	$TBD \\ \geq A_{CHLI}$	
Low (L)	$CIR \ge 0$ $EIR \ge 0*$	≤10 ms	<i>≤8 ms</i>	$\leq 2.8 \text{ ms or}$ N/S	$\leq 2.9 \text{ ms or}$ N/S	≤.1 % (i.e., 10 ⁻³)	$TBD \\ \geq A_{Avail}$	$TBD \\ \geq A_{HLI}$	$TBD \\ \geq A_{CHLI}$	

Build on MEF 22.2 PT objectives framework for 5G Transport and Transport Slice KPIs

Adding Slice Layer

Network Slicing - KPIs

Synchronization

ITU G.8271.1 TAE Budget

Budget Component	Budget	Comment					
PRTC	100ns, 30ns for ePRTC	N/A for the most stringent fronthaul TAE target, which is referenced to the last common BC					
Holdover and network rearrangements	400ns	N/A if the services requiring finest timing are not offered during rearrangements	Standardization Actions				
Random error of all PTP nodes	200ns	Accumulated low frequency random noise of all nodes (high frequency noise is filtered)	 Here 1914 Scope How timing is accomplished is outside the scope of IEEE 1914 				
Constant error of all PTP nodes	11 hops x 50ns = 550ns	Could be reduced with better	define permit the appropriate timing mechanisms to be used				
	21 hops x 20ns = 420ns	- designs					
Link asymmetries	100ns for 11 hops	Could be reduced with fiber	• 3GPP				
	230ns for 21 hops	 asymmetry measurement techniques 	 We must continue to liaise with 3GPP to get their TA 				
End application	150ns	20ns was specified by CPRI organization for IEEE 802.1CM	- frequency offset, jitter, and other timing requirements				
Total	1500ns		Richard Tse, Synchronization and NGFI				
	ł		IEEE 1914 April 5, 2017				

SyncE,IEEE1588v2 BITS, Stratum 3 Clock

k 🔿

IEEE 1588v2 requires 1ns precision timing

Adding Slicing Layer

Network Slicing Lifecycle Management Requirements

- Mobile Network Slicing Lifecycle Management
 - Instantiation/Configuration, Activation, Supervision, Reporting, Upgrade/Reconfiguration/Scaling, Deactivation, Termination
- Corresponding Transport Network Slicing Lifecycle Management
 - Instantiation/Configuration, Activation, Supervision, Reporting, Upgrade/Reconfiguration/Scaling, Deactivation, Termination

24

Network Slicing Reconfiguration

Requirements – Dynamic and On-Demand

- Mobile Network Reconfiguration needed as Applications and Traffic Pattern changes due to Event/Time
- Mobile Fronthaul Network Reconfiguration needed as RRH/BBU functional split adapted to Applications and Traffic Pattern Changes
- Network Slicing Reconfiguration can be dynamic and on-demand

25

Network Slicing Scaling

Requirements – Scale up & down - Dynamic and On-Demand

Each Network Slice can scale up & down dynamically and on-demand as Applications and Traffic Load changes
 Each Transport Slice can scale up & down dynamically and on-demand as Applications and Traffic Load changes

Network Slicing Architecture– Transport Path

- □ Variety of Transport Network Paths at different parts of the Network
- Some are self contain without crossing multiple parts of the Network: UNI-UNI
- Some are cross multiple parts of the Network: UNI-ENNI-UNI
- Some UNIs are Mobile UNI (mUNI) and some are Virtual UNI (vUNI) due to vBBU and vCORE
- Transport Path can span a single transport layer (L0, L1, L2) or multiple layers (L0/1/2)

Network Slicing - Carrier Ethernet

□ Transport Slice – Carrier Ethernet Traffic Engineering Requirements – Adding Slice Layer

Network Slicing – Ethernet Services

□ Adding Slice Service types (A group of EVCs ?)

Network Slicing – Ethernet OAM

Transport Slice – Ethernet OAM – Adding Slice Layer (A group of EVCs?)

Network Slicing – Network Protection

□ Transport Slice – Packet Network Protection Requirements – Adding Slice Layer

Network Slicing Mobile Protocol I/F Requirements User Plane

Figure 8.3.1-1: User Plane Protocol Stack 3GPP TS 23.501

- □ User Plane -> PDU session/layer -> The PDU carried between UE and The DN (Data Network)
- PDU session type Ipv6 (IPv6 Packets), Ethernet (Ethernet Frames)
- PDU session multiplexing Multiplexing traffic of different PDN sessions (possibly different session types)

Network Slicing Mobile Protocol I/F Requirements Control Plane

- Control Plane -> Control PDU session/layer -> The PDU carried to/from Control Plane still being defined
- Control PDU session type Ipv6 (IPv6 Packets), Ethernet (Ethernet Frames)
- Control session multiplexing Multiplexing traffic of different PDN sessions (possibly different session types)

