IEEE STANDARDS ASSOCIATION

OAM Asymmetric latency

Leon Bruckman IP Light Ltd.

Compliance with IEEE Standards Policies and Procedures

Subclause 5.2.1 of the *IEEE-SA Standards Board Bylaws* states, "While participating in IEEE standards development activities, all participants...shall act in accordance with all applicable laws (nation-based and international), the IEEE Code of Ethics, and with IEEE Standards policies and procedures."

The contributor acknowledges and accepts that this contribution is subject to

- The IEEE Standards copyright policy as stated in the IEEE-SA Standards Board Bylaws, section 7, <u>http://standards.ieee.org/develop/policies/bylaws/sect6-7.html#7</u>, and the IEEE-SA Standards Board Operations Manual, section 6.1, http://standards.ieee.org/develop/policies/opman/sect6.html
- The IEEE Standards patent policy as stated in the *IEEE-SA Standards Board Bylaws*, section 6, <u>http://standards.ieee.org/guides/bylaws/sect6-7.html#6</u>, and the *IEEE-SA Standards Board Operations Manual*, section 6.3, http://standards.ieee.org/develop/policies/opman/sect6.html

IEEE 1914.1 Next Generation Fronthaul Interface Jinri Huang, huangjinri@chinamobile.com

Asymmetric latency			
Date: 2017-04-19			
Author(s):			
Name	Affiliation	Phone [optional]	Email [optional]
Leon Bruckman	IP Light Ltd.	+972-3-7217821	Lbruckman@iplight.com

Introduction

- Time synchronization in all networks either wired or wireless is important. It is, however, particularly vital for wireless networks.
- Wireless time synchronization is used for many different purposes:
 - to calculate the distance to mobile terminals,
 - to support geographical localization services,
 - to control the transmission power,
 - to avoid interferences with other cells and base stations,
 - to manage handovers,
 - to get accurate access to the time-slots,
 - to compensate the propagation delay,
 - to reuse frequencies efficiently,
 - to calculate the billing.
- In his presentation (Synchronization_and_NGFI, April 5th 2017 Webex), Richard Tse highlighted the issue of timing inaccuracy due to asymmetric link delay.

The problem

- For accurate timing synchronization, PTP relays on the assumption that latency is symmetric, so any asymmetry introduces an error.
 - TC alleviates the problem for nodes asymmetry, but link (fiber) asymmetry still remains.
 - Note that 10 meters in fiber length difference are equivalent to 50ns.
- Some solutions are being considered each with its caveat:
 - Use GNNS in both sides
 - But it is hard to get GPS signal in some places, e.g. subway
 - Use bidirectional fibers
 - But transport networks typically use unidirectional fibers
 - Manual methods
 - But it is hard work to measure compensation value at every endpoints
 - After a protection switch, the compensation should be measured again
 - When network changes (e.g. repair fiber line break), compensation should be manually measured again.

IEEE STANDARDS ASSOCIATION

Possible solution – line swapping

- Line swapping is suitable for unidirectional links and bidirectional links using different wavelengths.
- The process:
 - Measure delay in each direction
 - IEEE1588 "Like" protocol
 - Calculation of one way delay
 - Add delay to compensate the asymmetry
 - Run process automatically each time the link recovers from a failure
- This scheme has been already described (not in great detail) in G.8271 Appendix IV.
- During the last ITU-T SG15/Q11 interim meeting there was support for beginning work on the asymmetry issue, and they plan to address it at joint session with Q13/15 during the next SG15 plenary meeting.

The swapping scheme

IEEE STANDARDS ASSOCIATION

SOAM - FM

Work to be done

- Liaise with SG15/Q13 and SG15/Q11 to express our interest in this issue and request to be updated on progress.
- Verify that NGFI supports asymmetric latency evaluation for bidirectional and unidirectional links.
- Assuming swapping is agreed as a solution:
 - Define swapping process requirements for NGFI:
 - When is swapping applicable ?
 - When is swapping activated ?
 - Who controls the swap ?

IEEE STANDARDS ASSOCIATION

Motion #____

- Liaise with SG15 Q13 and Q11 to express our interest in following their progress on Asymmetry latency measurement.
- Mover: Leon Bruckman
- Seconder:
- Yes: ____ No: ____ Abstain: ____ (technical motion needs >= 2/3)

