IEEE STANDARDS ASSOCIATION

NGFI RMIX traffic profile

Jouni Korhonen Broadcom

Dallas meeting 4/19-21/2017

Compliance with IEEE Standards Policies and Procedures

Subclause 5.2.1 of the *IEEE-SA Standards Board Bylaws* states, "While participating in IEEE standards development activities, all participants...shall act in accordance with all applicable laws (nation-based and international), the IEEE Code of Ethics, and with IEEE Standards policies and procedures."

The contributor acknowledges and accepts that this contribution is subject to

- The IEEE Standards copyright policy as stated in the IEEE-SA Standards Board Bylaws, section 7, <u>http://standards.ieee.org/develop/policies/bylaws/sect6-7.html#7</u>, and the IEEE-SA Standards Board Operations Manual, section 6.1, http://standards.ieee.org/develop/policies/opman/sect6.html
- The IEEE Standards patent policy as stated in the *IEEE-SA Standards Board Bylaws*, section 6, <u>http://standards.ieee.org/guides/bylaws/sect6-7.html#6</u>, and the *IEEE-SA Standards Board Operations Manual*, section 6.3, http://standards.ieee.org/develop/policies/opman/sect6.html

IEEE 1914 WG NGFI Jinri Huang – huangjinri@chinamobile.com

NGFI RMIX traffic profile Date: 2017-04-11				
Name	Affiliation	Phone [optional]	Email [optional]	
Jouni Korhonen	Broadcom		Jouni.korhonen@broa dcom.com	

Purpose

- For the generic RoE enabled switch located in an NGFI network, a standard classification of the traffic profile is required to define the throughput performance of the networking node.
- A standard classification greatly helps device manufacturers to design for specific node performance and customers to verify the claimed networking node/network performance.
- Follow the example of IMIX (Internet Mix) as described in IETF RFC 6985 and the well-known "Simple IMIX" profile (*), which have had a great success in other deployment scenarios.
- Define a standard NGFI RMIX profile classification guideline as a part of the IEEE P1914.1 specification, which is targeted to NGFI networks transporting a combination of "radio traffic" and "Internet traffic".

IEEE STANDARDS ASSOCIATION

Assumptions for the initial profile

- Radio traffic is fixed size packet transfers i.e., no mixing of variable packet sizes for radio traffic.
- Radio payload sizes defined as 256, 384, 512 and 1024 octets.
- "Backhaul" and C&M traffic also exists in the switch, which are generally variable packet size -> IMIX part of the profile.
- Maximum encapsulation of 90 octet to be supported:
 - Current L2 and future L2.5 and L3 encapsulation overhead.
- For IMIX use one of the the well-known profiles (*):
 - The "simple profile" defined as 64:7 + 570:4 + 1518:1 octet packets
- RMIX = Radio Traffic + IMIX

IEEE STANDARDS ASSOCIATION

Insert Title here (*) https://en.wikipedia.org/wiki/Internet_Mix Insert Date here

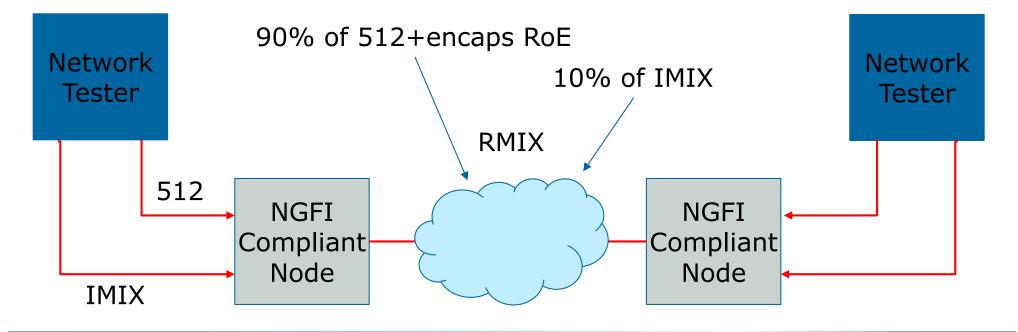
NGFI RMIX profile proposal

Variable	Data Set	
Radio Traffic Load	90%	
Radio Packet Sizes	{256, 384, 512, or 1024} payload octets	
IMIX Load	10%	
IMIX Packet Sizes	{64:7, 570:4, 1518:1} octet packets distribution	

- Radio packet sizes proposed are the payload only.
- E.g. 256 octet packet, with minimum L2 header is 18 octet encapsulation + 8 octet RoE header + 256 octet payload + 20 octet IPG (includes preamble).
- The IMIX profile packet distribution through a node/over a link is 7x64, then 4x570 and then 1x1518 octet packets + 20 octet IPG per packet..

About RMIX profiles

- The "100% load" in a profile means the total traffic you see on wire or going through your NGFI compliant networking device:
 - With the given RMIX load the end to end system and each intermediate node has to meet the other 1914.1, 802.1CM, etc specified requirements.
- For example for a 50Gb/s RMIX load:
 - One would see 45Gb/s of RoE and 5Gb/s of IMIX traffic..
 - It does not matter whether the link is 50G or 100G, or if the networking device has 300G or 1Tb of switching capacity.
- RMIX profiles are simple tools to test both network and devices.
 - Also simple to implement in tester devices.
 - Useful for silicon & system vendors as well as for operators.


Extensibility of profiles

- Current proposal defines a simple 90%:10% RMIX baseline that is targeted for single split option radio traffic.
- However, profiles are extensible:
 - Future amendments can add different RMIX load distributions and assume different traffic characteristics e.g., bursty and/or VBR traffic characteristics.

Example use of the NGFI RMIX profile

- Assume 512 octet radio traffic payload.
- Network & nodes able to cope with RMIX traffic profile.
- Latency/synchronization requirements tested and has to be met when RMIX profile is used in a testing set up/real deployment.

IEEE STANDARDS ASSOCIATION

Insert Title here

Next steps

- Approve the initial simple NGFI RMIX profile to be included into the IEEE P1914.1 specification:
 - Can be informative..
- **Keep it simple!** Can be evolved/refined later but start with a very simple and straight forward profile.
- Motion for a base line..

Motion #3

- Agree to add an **RMIX profile** Annex to the IEEE P1914.1 standard using as a baseline for the content specified in tf1_1704_korhonen_rmix_1.pdf side 6.
- Mover: _Jouni Korhonen_
- Seconder: __Richard Tse_
- Yes: 10 No: 0 Abstain: 1 (technical motion needs >= 2/3)

