

IEEE 1914 NGFI Partial Timing Support (PTS) in NGFI

Yongfang Xu, Nokia Shanghai Bell

4-6 December 2018

Compliance with IEEE Standards Policies and Procedures

Subclause 5.2.1 of the *IEEE-SA Standards Board Bylaws* states, "While participating in IEEE standards development activities, all participants...shall act in accordance with all applicable laws (nation-based and international), the IEEE Code of Ethics, and with IEEE Standards policies and procedures."

The contributor acknowledges and accepts that this contribution is subject to

- The IEEE Standards copyright policy as stated in the IEEE-SA Standards Board Bylaws, section 7, <u>http://standards.ieee.org/develop/policies/bylaws/sect6-7.html#7</u>, and the IEEE-SA Standards Board Operations Manual, section 6.1, http://standards.ieee.org/develop/policies/opman/sect6.html
- The IEEE Standards patent policy as stated in the *IEEE-SA Standards Board Bylaws*, section 6, <u>http://standards.ieee.org/guides/bylaws/sect6-7.html#6</u>, and the *IEEE-SA Standards Board Operations Manual*, section 6.3, http://standards.ieee.org/develop/policies/opman/sect6.html

Partial Timing Support in NGFI

IEEE 1914 Next Generation Fronthaul Interfaces Jinri Huang, HuangJinri@ChinaMobile.com

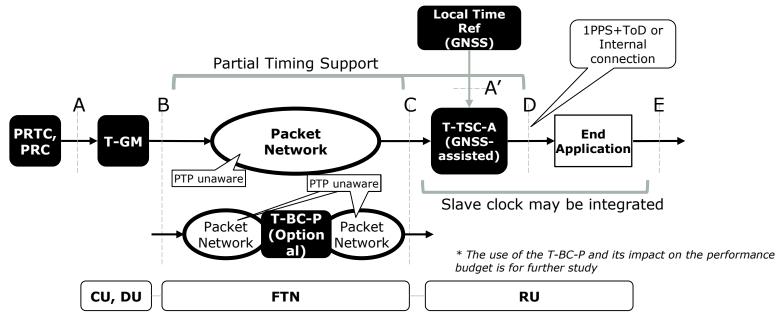
Partial Timing Support (PTS) in NGFI			
Date: 2018-12-04			
Author(s):			
Name	Affiliation	Phone [optional]	Email [optional]
Yongfang XU	Nokia Shanghai Bell		

Partial Timing Support in NGFI

ΕE

PTS requirements in IEEE P1914.1

- IEEE P1914.1/D3.0 has such requirements in section 8.5.2 and 9.3.1:
 - In section 8.5.2 (NGFI Requirements):
 - One of the following PTP profiles shall be used for NGFI network time distribution, with the optional exceptions that are listed henceforth:
 - *a)* **ITU-T G.8275.1 PTP Telecom Profile** for Phase/Time Synchronization with Full Timing Support from the Network.
 - *b) ITU-T G.8275.2 PTP Telecom Profile* for Phase/Time Synchronization with Partial Timing Support from the Network.
 - In section 9.3.1 (FTN Requirement):
 - For packet-based time distribution, an FTN shall support at least one of the following PTP profiles, with the optional exceptions that are listed henceforth:
 - *a) ITU-T G.8275.1 PTP Telecom Profile* for Phase/Time Synchronization with Full Timing Support from the Network.
 - **b) ITU-T G.8275.2 PTP Telecom Profile** for Phase/Time Synchronization with Partial Timing Support from the Network.

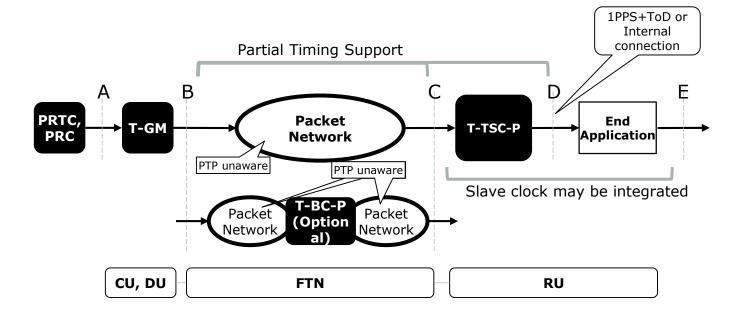


IEEE STANDARDS ASSOCIATION

Partial Timing Support (PTS) (1 of 2)

Per G.8271.2, PTS is composed of two cases:

- Assisted Partial Timing Support (APTS)
 - PTP is used as a backup timing source to a local timing reference (e.g., PRTC+GNSS) for durations up to 72h. It is not intended to use PTP as the primary timing source



Partial Timing Support (PTS) (2 of 2)

Partial Timing Support (PTS)

• PTP is used as the primary source of time to the end application.

* The use of the T-BC-P and its impact on the performance budget is for further study

IEEE STANDARDS ASSOCIATION

Partial Timing Support in NGFI

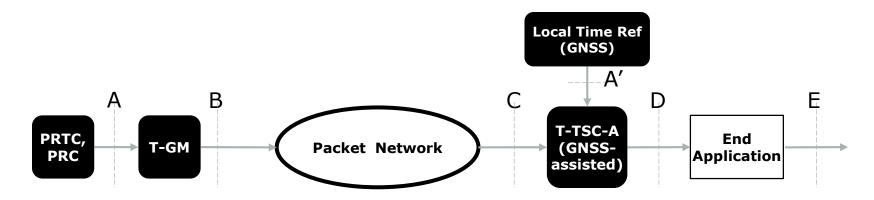
Why PTS or APTS?

- Compared with the solution of GNSS populated at every eNB, PTS/APTS can solve GNSS antenna line of sight (LoS) problem, especially for the deployment in "urban canyon"
- Compared with deploying new equipment with T-BC embedded, PTS/APTS can support time/phase distribution in existing packet network without PTP support, which avoids an onerous network investment cycle
- Compared with deploying distributed (lite) PRTC, APTS can provide higher (holdover) performance when the PRTC loses accurate GNSS connectivity

PTS(APTS) vs. FTS

- Compared with the solution of GNSS populated at every eNB, PTS/APTS can solve GNSS antenna line of sight (LoS) problem, especially for the deployment in "urban canyon"
- Compared with deploying new equipment with T-BC embedded, PTS/APTS can support time/phase distribution in existing packet network without, which avoids an onerous network investment cycle
- Compared with deploying distributed (lite) PRTC, APTS can provide higher (holdover) performance when the PRTC loses accurate GNSS connectivity

- FTS can provide same feature to deliver time/phase synchronization over network
- According to G.8271.2, PTS currently only considers the applications corresponding to the class 4 (1.5us)
- FTN is a time-sensitive network. PTS can't provide determinative time sync performance, as its performance heavily relies on the PDV performance of the PTP-unaware Nes
- FTS has well defined noise model in each node (cTE, dTE) and formula to calculate accumulated noise of a FTS clock chain at network limit (RU input). This can provide guarantee performance in time/phase (for all classes) and frequency error.
- It also relates to the PRTC design, which supposes to have secondary time reference or freq reference input as backup



IEEE STANDARDS ASSOCIATION

Network Limits defined for PTS (G.8271.2) (1 of 2)

- The network limits specified in G.8271.2 are for small, wellcontrolled networks (e.g., in-building or last-mile network segments), which can guarantee that the stringent PDV and asymmetry network limits are met.
- The necessary clock specifications for PTS are all for further study (G.8273.4 is in development in Q13/SG15), and target for class 4 in backhaul.
- The limits at the refer point C given in G.8271.2 represent the maximum permissible levels of phase/time error and noise, per the applications corresponding to the class 4 listing in Table 1 of [ITU-T G.8271], i.e. +/-1.5us

Network Limits defined for PTS (G.8271.2) (2 of 2)

Reference point A and A': Reference point B (integrated):

• max $|TE| \le 100 \text{ ns}$

* The network limit at point A' may not be applicable in all cases

Reference point C: APTS (Type I):

- Peak-to-peak pktSelected2wayTE
 <1100 ns
- Selection window = 200 s
- Selection percentage = 0.25%
- Selection method: percentile average packet selection

PTS (Type I):

- max|pktSelected2wayTE| < 1100 ns
- Selection window = 200 s
- Selection percentage = 0.25%
- Selection method: percentile average packet selection

Reference point D: APTS (Type I):

max|TE| ≤ 1350 ns ^{**}

PTS (Type I):

FFS

* This requirement is only applicable in case of T-TSC-A external to the end application

IEEE STANDARDS ASSOCIATION

Partial Timing Support in NGFI

Conclusions and Proposals

- G.8275.2 is not designed for more stringent time/phase synchronization. Current relevant ITU recommendations are for the applications corresponding to the class 4
- The PTP-unaware part of the network using PTS requires wellcontrolled low levels of packet delay variation (PDV) and asymmetry
- Lack of specification of PTS clocks leads to indeterminate time/phase performance during the period of network planning
- PTS/APTS would not provide enough accuracy required by Category A+/A/B
- Reconsider the requirement of support of PTS in IEEE 1914.1
- At least to add notes under the requirement to restrict the PTS use case, for example, 3G and 4G backhaul

IEEE STANDARDS ASSOCIATION