P1752.2 **Cardiorespiratory Subgroup Teleconference**

May 4, 2023 8 AM PDT; UTC 3:00 PM

IEEE STANDARDS ASSOCIATION

Working Group Sponsored by IEEE Engineering in **Medicine & Biology Standards Committee**

P1752.2 **Cardiorespiratory Subgroup**

Agenda May 4, 2023

Attendance & Introductions Items:

- CR schema structure

Other business

- Subschema groupings

 \checkmark Preparation (session March 7, 2023): Review JSON schema coding Informed by IEEE 1751.1 schemas Esp familiarize with "Metadata" and "Utility" schemas Consider: Samples -> Schemas Assessing dependencies: Organization of CR schema

✓ Schema timeline / initial draft target

IEEE 1752.1 Standard for Mobile Health Data

IEEE 1752.2 Standard for Mobile Health Data

Metabolic Cardiorespiratory

Statig Big 200 Borg State December 20 Bar District

https://opensource.ieee.org/omh/1752

Morbidity & mortality ... WHO category of highest consequence

Preventative medicine ... overall intervention of highest impact

Health care delivery & economics ... need for digital biomarkers with semantic interoperability —> contextuality

Impactful Healthcare Relevance

Cardiovascular disease **#1**

cerebrovascular

heart failure

dysrhythmias

Physical activity & mvt

CR fitness

Apps

Wearables & ext. detectors

Internal/implant sensors*

Hypertension

Cardiorespiratory Schema **Proposed Structure**

Electrical **Systoles**

Pulse

Pulse Dynamics

Rhythm

Blood Pressure Systolic, diastolic Cardiodynamics

Respiratory

- → Ventilatiory dynamics
- → Gas Exchange
- Anomalies

Atomicity -

• Determine desired granularity of schema's data representations

Balancing parsimony and complexity • Pragmatics and the 80/20 rule

• Example: OmH explicitly determined relationship of physical activity to glucose to be outside 80/20 region...

Balancing permissiveness and constraints

• Pragmatics for value sets units, cardinality

Designing for data liquidity

- Data interchange: Data's meaning same for sender and receiver
 - Header schema: Operational context for metadata data payload
 - : Data point creation and identification
 - : Acquisition prevenance (informed by M2DK mPROV ?)
 - Measurement schema: Clinical context for metadata

Alignment with clinical data standards

• Semantic interoperability by relying on existing vocabularies (ex. SNOMED, LOINC, etc) and units of measure (UCUM Codes)

Modeling of time

SCHEMA DESIGN PRINCIPLES

https://www.openmhealth.org/ documentation/#/schema-docs/ schema-design-principles

Cardiac Depolarization Event Assessing Dependencies

Electrical

 \sim

Mechanical

 \sim

ECG signals, electrograms

heart sounds, +/- seismic

PRSteiner - Dartmouth

Data differences

Different measurements

"Downstream" result of ventricular contaction

pulsation contact PPG noncontact

Cardiac Systolic Event

AE: Yes VE : Yes

Mechanical

ECG signals, electrograms

heart sounds, +/- seismic

AE: Maybe VE : Yes

Atrial event (AE) detection Ventricular event (VE) detection

Pulsatile

AE : No VE : Yes

pulsation contact **PPG** noncontact

PRSteiner - Dartmouth

Compatible extensibility layers

- Tiered Structure for the Cardiac Schema •
- •

Examples:

- Waveform morphology analytics

Enhancing clinical relevance

- Differentiate atrial, atrial-paced, ventricular, ventricular paced (all types)