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SIMULATION, TESTING,  
VERIFICATION, AND VALIDATION (STV2) 
OF AUTONOMOUS DRIVING 

 

ABSTRACT 
STV2 is a set of processes that support the development, validation, and operation of autonomous 

driving systems from the perspectives of safety and cost. The scope, architecture, and critical 

components of STV2, as well as how the full lifecycle of autonomous driving systems is covered, is 

presented in this white paper. STV2 is part of the infrastructure and tooling layer of autonomous driving 

architecture. 

STV2’s business objective and process are fulfilled by a simulation system supported by data 

infrastructure as described in this white paper.   
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1. INTRODUCTION 
1.1. GENERAL 
As the world advances into a new era of mobility, the evolution of autonomous vehicles (AVs) has been 

remarkable, from the early experiments with remotely controlled vehicles in 1921 to the innovative steps taken 

more recently by emerging companies [1],[2].1 By 2030, there may be progress toward the commercialization of 

Level 4 autonomous vehicles, as defined by the Society of Automotive Engineers, which are designed to perform 

driving tasks independently under specific conditions. However, it is important to note that achieving full Level 

4 capabilities might remain challenging and uncertain [3]. The development of AVs presents increasingly intricate 

challenges at each stage. Simulation, testing, verification, and validation (STV2) are critical to addressing these 

challenges. This white paper aims to provide an in-depth exploration of STV2, emphasizing how simulation and 

robust data infrastructure can significantly enhance the development process while upholding stringent safety 

and performance standards.  

1.2. CHALLENGES OF AUTONOMOUS DRIVING 
1.2.1. GENERAL 

The key challenges of autonomous driving are integral to its supporting infrastructure, operational environment, 

and the management of its operations. While the management of operations is primarily from within the 

autonomous vehicle at any point in time, infrastructure and environmental issues can be internal or external to 

the AV. Therefore, a deep understanding of the challenges would require individual identification and analyses 

of issues or items of concern in infrastructure, operational environment, and operations management, followed 

by an integrated analysis of the same.  

1.2.2. SAFETY AND SECURITY 

Safety and security in autonomous driving can be viewed from two scenarios. The first scenario is where the 

autonomous vehicle is a security safety threat to its environment and surroundings, and the second scenario is 

where there are safety and security threats to the autonomous vehicle. The following is a detailed analysis and 

discussion of these two scenarios: 

 
1 Numbers in brackets correspond to the references in Section 5 
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a) The autonomous vehicle causing safety and security challenges to its environment—An autonomous 

vehicle faces significant security challenges when its internal or local system is compromised, leading to 

unauthorized changes in its settings and configurations. These alterations can cause malfunctions, such 

as loss of direction, which may suggest attempts at hijacking. Such vulnerabilities are critical concerns 

for the safety of the vehicle and the content within, including passengers. To effectively address these 

challenges, robust cybersecurity measures are crucial. Compliance with standards like ISO/SAE 

21434:2021, Road vehicles—Cybersecurity engineering plays a key role in protecting the vehicle’s 

systems. However, despite these precautions, unauthorized adjustments can still occur. These 

adjustments can severely degrade the vehicle’s ability to recognize external elements such as other 

vehicles and road signs, increasing the risk of accidents, physical harm, and even loss of life.  

b) The operational environment causing safety and security challenges to the autonomous vehicle—The 

autonomous vehicle’s operating environment and structures that support the operations of the 

autonomous vehicle can also be compromised and subjected to security attacks and/or 

distortions/corruption in control data and transmission signals, which can result in errors and even loss 

of communication of the environment with the autonomous vehicle. Such loss of communication and 

corruption of routing data, for example, through interceptions, can also cause malfunctioning of the 

autonomous vehicle resulting in loss of direction.  

1.2.3. REGULATIONS 

Regulations here encompass three aspects, i.e., compliance, certification, and supervision, which are critical for 

ensuring that AVs meet established safety and operational standards. Specifically, compliance involves adhering 

to legal and regulatory requirements set by governmental and industry bodies [4],[5],[6],[7]. Certification is the 

process by which AVs are officially recognized as meeting these standards [8],[9],[10]. Supervision refers to the 

ongoing oversight of AV operations to ensure continuous adherence to these regulations [11]. Together, these 

components form the backbone of a regulatory framework essential for safely and reliably integrating AVs into 

public roadways.  

The interplay between developers and regulators is pivotal in the rapidly evolving realm of AV. On the one hand, 

it is crucial to recognize the significant responsibility placed on AV developers. As AVs increasingly take on roles 

typically filled by human drivers, their design complexity escalates to address both anticipated and unforeseen 

safety concerns. Conversely, regulators respond to these challenges by demanding greater transparency in AV 

operations, a common hurdle in AI systems. While these regulations add complexity to AV development, their 
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importance cannot be overstated. They strike a necessary balance, preventing premature development of 

underdeveloped technology and avoiding excessively restrictive rules that might hinder the advancement of this 

innovative field. Through this balanced approach, developers and regulators collaboratively promote responsible 

development but also help maintain public trust and safety in an industry that is experiencing swift and significant 

changes. 

1.2.4. BENEFITS 

Full adoption of AVs is projected to yield significant cost benefits, estimated at around $4,000 per vehicle 

annually [12], or approximately $0.44 per trip-mile for shared AVs [13]. For individual users, accessing these 

technologies could be economically feasible. For instance, one developer’s self-driving package is available for a 

monthly subscription of around $199 [14]. The benefits of AVs encompass various aspects of daily life, including 

enhanced safety, reduced traffic congestion, and savings on parking space. Over time, these advantages are 

expected to offset the substantial costs associated with research and development (R&D), testing and 

certification, data management, and infrastructure updates.  

Despite the billions already invested in this sector and progress being gradual yet promising [15],[16], the long-

term economic outlook remains favorable. It is worth noting that the overall sustainability of the AV business 

model hinges crucially on how companies operate these vehicles [13]. This requires continuous and thorough 

research to adapt to the dynamic nature of this field. 

1.3. THE ROLE OF STV2 
1.3.1. RESEARCH AND DEVELOPMENT 

In the R&D of autonomous vehicles, STV2 is pivotal for transforming theoretical concepts into practical and 

reliable AV systems. During the R&D phase, the essential first steps are simulation [17],[18],[19] and testing 

[20],[21]. They enable developers to model and refine AV systems within both virtual environments and 

controlled real-world scenarios, identifying potential issues, and optimizing system performance early in the 

development cycle. Verification and validation, explored in detail in subsequent sections, are the later stages of 

the R&D process [22]. Verification ensures that each aspect of the AV system meets specific design and technical 

criteria, a necessary step for confirming the system’s adherence to initial specifications. Validation, in contrast, 

ensures whether the system fulfills its intended operational purpose and meets end-user requirements, crucial 

for ensuring the vehicle’s practical usability and safety in real-world conditions. 
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Thus, STV2 leads the progression from initial design to a fully functional AV prototype. Through these 

comprehensive steps, STV2 not only enhances the safety and reliability of the final product but also contributes 

to the efficient allocation of resources and cost-effectiveness during the development, making the AV systems 

both technologically sound and aligned with market and user expectations. 

1.3.2. VERIFICATION AND VALIDATION 

In the development of autonomous systems, both verification and validation are crucial for ensuring system 

integrity and operational efficacy, each addressing distinct aspects. Verification focuses on confirming that the 

system adheres to specific predefined requirements and that all elements are implemented correctly according 

to design specifications. This includes the process of requirement traceability, which tracks each requirement 

throughout the development lifecycle to ensure it is implemented and met by the final product. Verification also 

involves static analysis, where the code is analyzed without execution to identify potential vulnerabilities or 

deviations from the specified standards. Code reviews and inspections are thorough examinations of code and 

design documents to verify that all specifications are met and that the design can effectively handle both expected 

and unexpected scenarios. Integration testing is another facet of verification, examining the interfaces between 

components to ensure they work together as intended. 

Validation contrasts by assessing whether the system meets the needs and expectations of the end-users and 

operates effectively in the intended environment. Although verification establishes the foundational accuracy of 

system design against specifications, our following discussion will emphasize validation to demonstrate how 

systems perform under real-world conditions, ensuring they meet both functional and user-centric requirements.  

Validation can be broadly categorized into white box and black box testing, each with distinct methodologies and 

transparency levels [22]. White box testing is characterized by its openness and visibility into the system's internal 

workings. It typically involves the use of sophisticated simulation environments that incorporate Model-in-the-

Loop (MIL), Hardware-in-the-Loop (HIL), and Software-in-the-Loop (SIL). These simulations are critical for testing 

the integration and interaction of software with physical hardware components in a controlled environment. 

White box testing also extends to function tests, where specific functions are validated against expected outcomes 

and fault injection techniques, which deliberately introduce faults to test system responses. Furthermore, it 

includes the application of failure analysis methods such as Failure Mode and Effects Analysis (FMEA) and Fault 

Tree Analysis (FTA). These analyses are valuable in identifying potential failure points and evaluating safety 

implications, especially by simulating negative requirements and scenarios that involve misuse, abuse, or 

confusion by users.  
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Black box testing, on the other hand, does not reveal the internal mechanisms of the system to the tester, focusing 

instead on the outputs generated in response to certain inputs and conditions. This method employs simulation 

environments where models or entire systems are looped through various test cases to observe behavior without 

regard to the internal processing paths. Black box testing also involves empirical strategies where real-world 

conditions are mimicked as closely as possible, often utilizing a brute force approach to run through numerous 

realistic scenarios to test robustness and reliability. This approach is complemented by specific quality 

requirements testing, such as penetration testing, which assesses security vulnerabilities, and usability testing, 

which evaluates the user interface and user experience aspects. 

Both white box and black box testing are increasingly utilizing automated techniques to enhance the efficiency 

and effectiveness of the testing process. Automated validation employs artificial intelligence and cognitive testing 

methods to simulate human interaction with the system, aiming to uncover issues that might not be apparent 

through conventional testing methods. This automation is crucial in handling the complex, dynamic scenarios 

typical of autonomous system environments, enabling more frequent and thorough testing cycles that are 

essential for ensuring the safety and functionality of these systems. The choice between white box and black box 

testing methods, along with the degree of automation implemented, will depend on specific requirements, the 

nature of the system under test, and the criticality of the functions it performs. Each testing approach offers 

unique advantages and is often used in conjunction to provide a comprehensive validation framework for 

autonomous systems. 

TABLE 1 summarizes the various methods used to verify the integrity of autonomous systems, both statically and 

dynamically. All the system’s functional requirements should be met, and positive testing techniques are designed 

to ensure this. In contrast, non-functional requirements can be checked off thanks to the techniques used in 

negative testing. System requirement specifications (SRS) often do not list negative requirements, which include 

things like safety and cybersecurity.  
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TABLE 1 AUTONOMOUS SYSTEM STATIC AND DYNAMIC VALIDATION TECHNOLOGIES [22] 

Method Characteristics Tool support, technologies Coverage 
Regression 

strategy Strength Weakness Effectiveness Efficiency 

Modeling and 
simulation 
environments 
with SIL, HIL, 
MIL 

Static and dynamic Model checker, e.g., Matlab, 
dSPACE, Vector VT System, 
NovaCarts, Vires, PreScan 

0 Repeat impacted 
scenarios (low 
efficiency) 

Reduces validation cost 
Decouples hardware and software 

development 

Brute force for high coverage 
Requires large computation power 
Tests only for known scenarios 
Scenario banks are not comprehensive to 

validate autonomous systems 

0 0 

Function test Dynamic, all 
functions 

Modeling tool for functional 
abstraction with unit test 
tools (e.g., JUnit, PHPUnit), 
dedicated test 
environments for stub 
generation 

0 Repeat 
functional test 
cases for 
impacted 
functions 

Tests all AI aspects: sensing, decision-making, 
and action taken 

Validates all functional requirements 

Insufficient to validate complete system + + 

Integration test Dynamic Test suites, test management, 
combinatorial tools such as 
AETG, Citrus, etc. 

0 Regenerate test 
cases 

Tests integration of components Large number of interfaces; easy to miss 
some links 

Fault localization is difficult 

+ + 

Fault injection Static for residual 
defect 
estimation 

Test environment and defect 
modeling, e.g., beSTORM, 
Security Innovation 

− Introduce few 
selected 
defects 

Provides estimate on residual defects and 
coverage 

Exposes weaknesses, enabling designers to 
strengthen them 

Need concrete understanding of underlying 
system architecture and behavior 

+ − 

Negative 
requirements 
with misuse, 
abuse, confused 
cases 

Static, specifically 
for safety, 
security, 
usability 

Directly modeled and traced 
with requirement tools, 
e.g., DOORS, Visure, PTC, 
PREvision, Enterprise 
Architect, HP ALM 

0 Reuse situational 
negative cases 

Good for scenarios to be avoided 
Formalizes non-functional requirements 
Strengthens system security 

Difficult to set up systematically 
No coverage schemes 
The test cases do not necessarily cover all 

possible negative cases 

+ + 

FMEA, FTA Static, specifically 
for safety-
critical systems 

FMEA worksheets, component 
abstractions, reuse library 

0 Retest for the 
changed 
components 

Well established for safety and security (attack 
tree) 

Enables designers to foresee system interface 
failures 

Depends heavily on human knowledge 
Labor intensive 

+ + 

Experiments, 
empirical test 
strategies 

Empirical test 
generation for 
load test, 
performance, 
thermal, etc. 

Experiment-specific test tools, 
such as Parasoft DTP, 
EggPlant, Thermal imager, 
etc. 

+ Repeat the test 
strategies for 
changed 
functions 

Relatively easier to frame the test cases 
Covers wide range of electrical systems 

Depends heavily on human knowledge 
Labor intensive 
Very little or no test automation 

+ 0 

Specific quality 
requirements 
test, e.g., pen 
testing, fuzzing 

Dynamic, 
specifically for 
quality 
requirements 

Dedicated test tools, e.g., 
automatic fuzzing 
extensions, e.g., CANoe, 
OWASP ZAP, Vega, etc. 

− Retest for 
impacted 
components 

Well established for security 
Effective in ensuring that the system meets 

known quality requirements 

Often insufficient to validation complete 
system security and safety 

− + 

Brute force usage 
in real world 
while running 
realistic 
scenarios 

Dynamic for 
ensuring 
situational 
coverage 

Recording and replay with 
actual scenario libraries 
with data loggers from 
various sensor systems, 
e.g., Tecnomatix, CarMaker, 
EB Assist, CANape 

0 Repetition (low 
efficiency) 

Closest to real world and thus highly effective 
Validates all systems at once 
Comprehensive view and coverage 
Standardizes scenario storage format and 

tagging 

High effort for coverage 
Unclear coverage 
Most of the test cases are redundant 
Untransparent situational coverage 

+ − 

Intelligent 
validation, e.g., 
cognitive testing 

Dynamic test 
generation and 
selection 
depending on 
situation and 
environment 

Machine-learning frameworks, 
such as Tensorflow, Apache 
Spark, and so on 

Open data sets, such as 
nuScenes 

 Reuse generated 
test cases 
from 
dependency 
database 

Improved transparency 
Automatically considers dependencies to 

external environment and internal functions 
Automates major part of test procedure 
Standardizes scenario storage format and 

tagging 
Sharing test scenarios across V-model 

abstraction levels 

High effort to set up AI-based test 
environment 

Needs large computation power 
Growing discipline, i.e., not many methods 

and tools available 

+ + 
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The World Forum for Harmonization of Vehicle Regulations, more generally known as Working Party 29 (WP.29), 

bears the responsibility of providing regulations for road vehicles. They give special consideration to facilitate the 

introduction of innovations and technologies from a legal standpoint into the vehicles. WP.29 operates as a 

working group of the sustainable mobility division of the United Nations Economic Commission for Europe 

(UNECE). WP.29 now consists of seven working groups that focus on formulating new technical regulations within 

their subject expertise. 

In June 2018, the working party on automated/autonomous and connected vehicles (GRVA) was formed to 

evaluate the significance of WP.29’s actions related to automated/autonomous and connected vehicles. The GRVA 

team is also concerned with the security of automated vehicles. The Functional Requirements for Automated and 

Autonomous Vehicles (FRAV) working group is a loosely organized organization that has been working on the ideas 

of operational design domain (ODD), object and event detection and response (OEDR), and human-machine 

interaction (HMI) to better understand the functional requirements of AVs from a safety standpoint. This 

committee oversees outlining the criteria for AV approval, including safety standards. Validation method for 

automated driving (VMAD) is one of the GRVA’s informal working groups, along with FRAV. The mission of this 

team is to create innovative approaches to testing and evaluating AVs that can be employed in the certification 

procedure. The combination of FRAV and VMAD would lead to comprehensive regulatory frameworks for 

automated driving systems (ADS) [23].  

Perception algorithms for ADAS primarily rely on deep learning techniques. Two main approaches to validating 

ADAS systems are scenario-based and algorithm-based. 

Scenario-based methods involve creating and collecting a wide range of complex scenarios to simulate potential 

situations that may arise during real-world driving. The objective is to provoke system failures in the advanced 

driver assistance systems (ADAS), thereby identifying their weaknesses during the validation phase. Typically 

implemented on simulation platforms, these scenarios often draw from real-world vehicular accidents and 

artificially constructed complex situations. ADAS can be validated through software in the loop (SIL) or hardware 

in the loop (HIL). A cover article in Nature on March 23, 2023, titled “Dense Reinforcement Learning for Safety 

Validation of Autonomous Vehicles,” [24] introduced a method of adaptively adjusting scenarios through dense 

reinforcement learning. This approach can construct adversarial scenarios, expediting the discovery of 

conditions under which ADAS are prone to failure. 
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Scenario-based testing, generally applied to the entire ADAS, has the advantage of closely mirroring real-world 

conditions and providing easily interpretable failure modes for improvement. This approach is widely adopted 

by leading manufacturers and testing agencies. However, its limitation lies in the granularity of the test elements, 

which are often components of the scenario description language. For example, in a snowy or rainy scenario, 

this method cannot pinpoint which specific snowflake or raindrop causes the system to fail, meaning that it only 

covers a small part of the real parameter space. 

Alternatively, algorithm-based testing focuses on specific modules of the autonomous driving system, such as 

lane line detection or traffic sign recognition. Given the natural susceptibility of deep learning algorithms to 

adversarial attacks, these methods identify weaknesses in perception algorithms using such attacks. Various 

approaches exist, but the essence is to identify pixel combinations within a scenario that are most likely to cause 

algorithm failure. Typically, these attacks are conducted in simulated environments, but there are also instances 

of physical world attacks. A notable example is the Best Technical Poster Award at NDSS 2020, where researchers 

used a carpet designed to mimic road dirt to fool the open-source autonomous driving system, OpenPilot. 

The strength of algorithm-based methods lies in their ability to uncover the hidden capacity limits of ADAS and 

identify deeper vulnerabilities through algorithmic analysis, theoretically exposing a broader range of potential 

risks. However, these methods also have drawbacks. The attack techniques vary for different perception 

algorithms, and designing them is challenging, especially since algorithms in real scenarios often operate as black 

boxes. Moreover, the attack patterns generated by these methods can differ significantly from real-world 

scenarios, raising the issue of how to attribute successful attacks to interpretable patterns that can enhance the 

robustness of algorithms. This remains an unresolved challenge. 

1.3.3. OPERATIONS AND ASSURANCE 

STV2’s role in operations and assurance is vital for securing the long-term success and trustworthiness of 

autonomous driving technologies. Beyond initial testing, this involves a continuous focus on post-deployment 

processes, which is crucial for maintaining the operational safety and effectiveness of AVs. Adapting to the 

dynamic, ever-changing conditions of the real world is key. This adaptation includes but is not limited to the 

following: 1) continuous anomaly detection and performance monitoring using AV sensory data [26],[27]; 2) 

regular testing of AVs against a wide range of scenarios, particularly rare and unexpected ones [28],[29]; 3) 

keeping systems updated with the latest safety features and technological advancements [30]; 4) continuously 

tracking and adhering to evolving regulatory standards [31],[32]; 5) incorporating diverse feedback to enhance 
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user experience and safety [33],[34]. These examples, among other strategies, are pivotal in upholding rigorous 

safety and reliability standards in AV technology. 

1.4. MARKET LANDSCAPE 
The autonomous driving market is currently witnessing an optimistic growth phase, as projected by market 

research institutions. Valued at approximately USD 100 billion in 2023, the sector is expected to significantly 

advance with a compound annual growth rate (CAGR) of 20% to 40% over the next decade. By 2035, it is 

estimated that the revenue generated specifically by the autonomous driving sector could be between USD 300 

to 400 billion. This is a substantial portion of the broader autonomous vehicle market, which itself is anticipated 

to achieve a total market size of around USD 4 trillion by 2035 [35],[36],[37],[38]. In terms of regional market 

share, North America, particularly driven by Silicon Valley’s technological innovations and robust regulatory 

policies, accounts for about 40% of the global market. The Asia-Pacific region, especially China, Japan, and South 

Korea, is forecasted to witness the fastest growth [35],[36], powered by their commitment to traffic and energy 

efficiency goals—key factors aligning with autonomous vehicle development.  

The market landscape is characterized by stiff competition among startups and established OEMs vying for 

dominance. Specifically, Tesla, a leading company in autonomous driving, aims to sell 20 million vehicles annually 

by 2030 [39], targeting around 20% of the global vehicle market.2 Moreover, a McKinsey report suggests that by 

2035, in an accelerated adoption scenario, approximately 57% of all vehicles could be equipped with advanced 

autonomous driving technologies [38], underscoring the rapid technological integration within the automotive 

sector. 

The flourishing market for autonomous driving is significantly impacting the landscape of STV2. As autonomous 

vehicles become increasingly advanced and widespread, there is a corresponding escalation in demand for 

rigorous and comprehensive STV2 processes. It is estimated that design validation and related activities will 

constitute a major, if not the largest, cost component in the development of autonomous driving systems 

[40],[41]. Concurrently, the market for simulations is expected to grow at a CAGR of 13.4% over the next decade, 

reaching approximately USD 3 billion [42]. The transition from traditional hardware-defined vehicles to 

software-defined ones is recognized as a critical step toward fully adopting autonomous driving. This shift, 

however, introduces significant challenges for manufacturers and their suppliers in terms of STV2, necessitating 

 
2 This information is given for the convenience of users of this standard and does not constitute an endorsement by the IEEE of these products. 
Equivalent products may be used if they can be shown to lead to the same results. 
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a revolutionary approach to industry frameworks. Nevertheless, this complexity also presents a unique 

advantage for technological leaders who can outpace competitors in this domain [43]. These trends underscore 

the vital need for robust and comprehensive STV2 implementation to ensure that autonomous vehicles are not 

only constructed efficiently but also operate with utmost safety and reliability. 

 

2. OVERVIEW OF STV2 

2.1. THE LIFECYCLE OF STV2 
Traditionally, STV2 processes in autonomous driving have been rooted in model-based methods with manual 

parameter tuning, focusing on modular procedures. The emergence of AI, however, is revolutionizing this 

paradigm. Challenging tasks are increasingly addressed through data-driven, end-to-end processes, leveraging 

advanced neural networks and the utilization of high-quality, diverse datasets. As a result, the entire STV2 

lifecycle is becoming more data-centric, intertwining requirements with various model enhancements, 

underpinned by methods like simulations, on-road testing, and feedback from operations. The lifecycle is 

illustrated in FIGURE 1. 

  

FIGURE 1 LIFECYCLE OF STV2 AND STAKEHOLDERS  
(KPI: KEY PERFORMANCE INDICATOR) 
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2.2. KEY ELEMENTS AND GAP ANALYSES 

2.2.1. SCENARIOS 

A scenario includes detailed elements within a specific driving situation or environment. These elements, ranging 

from road configurations to weather conditions and the behavior of other road users, are critical for the tests or 

simulations for AVs. Scenarios can be broadly categorized into real or virtual formats, each serving unique 

purposes in the development and testing of AVs. 

Real scenarios are as follows: 

 Direct observation: Derived from actual driving conditions, captured through vehicle-mounted sensors, 

documenting real traffic, pedestrian behavior, and environmental conditions. 

 Proving ground: Custom-built physical settings that replicate real-world conditions, allowing for safe 

and controlled testing of scenarios that are hard to encounter in the real world. 

Virtual scenarios are as follows: 

 Pure computer-generated simulations: These scenarios are purely digital and are constructed to maintain 

a no-risk environment to test algorithms across diverse conditions. 

 Logsim: Utilizes recorded real-world driving data and replays in a simulated environment to analyze 

interesting past events. 

 Open-loop data replay: Involves testing with predetermined inputs to observe the AV’s response without 

its actions influencing the scenario. 

 Worldsim: A dynamic simulation where the virtual environment reacts to the AV’s actions, offering a more 

realistic and interactive testing experience. 

 Log2world: Merges real-world data with interactive features, allowing for “what-if” scenarios and 

counterfactual analysis. 

The development of scenarios for autonomous vehicle testing and simulation is a complex process that faces 

multiple challenges. Some major challenges, listed next, need to be effectively addressed to ensure the scenarios 

are realistic, comprehensive, and ready for advancing AV technology. 

a) Realism gap: Advanced simulations may still fall short of fully encapsulating the unpredictability and 

complexity of real-world driving. 
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b) Data requirements: The creation of realistic scenarios demands extensive and varied data, posing 

challenges in acquisition and management. 

c) Validation and standardization: The absence of universal standards for scenario validation complicates 

the consistent assessment of AV system readiness and safety. 

d) Scalability issues: Developing, managing, and testing an exhaustive range of scenarios to cover all driving 

conditions is a formidable task. 

e) AI integration: Seamlessly integrating scenario testing with the ongoing development and refinement of 

AI algorithms is an ongoing challenge. 

2.2.2. SIMULATION MODELS 

The current development and application of simulation models reveal several key findings. These include 

advancements in sensor models, vehicle dynamics, and agent behavior models, as well as performance 

benchmarks like realism and latency, and associated bottlenecks. 

 Sensor models: Sensor simulation is critical for validating the perception systems of autonomous vehicles. 

Recent developments have focused on creating more realistic and varied simulation environments to test 

sensor performance under different conditions. 

Examples: Tools like NVIDIA’s DRIVE Sim and Unity’s High-Definition Render Pipeline (HDRP) simulate light 

detection and ranging (Lidar) sensors, allowing for realistic rendering of Lidar data in various weather and 

lighting conditions. CARLA, an open-source simulator for autonomous driving, offers camera simulation 

capabilities that include different types of cameras (RGB, depth, semantic segmentation) to mimic real-

world scenarios. An enhanced version of this simulator, Synkrotron Oasis, offers more accurate camera 

and Lidar sensor models, along with user-friendly tools to configure all the parameters depending on 

various sensor types. 

 Vehicle dynamics: Advanced models simulate vehicle behavior and interactions with various road 

conditions. The goal is to create realistic representations of how vehicles move and respond to control 

inputs. 

Examples: Simulators like IPG CarMaker and VI-CarRealTime provide high-fidelity vehicle dynamics models 

suitable for real-time applications, including various types of vehicles and driving conditions. rFpro offers 

detailed models for vehicle handling and control, allowing engineers to test vehicle responses to steering, 

braking, and acceleration under different road conditions. 
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 Agent behavior models: Developing sophisticated models for pedestrian, cyclist, and other vehicle 

behavior is essential. This includes modeling unpredictable human behavior to ensure the autonomous 

system can handle real-world scenarios. 

Examples: SUMO (Simulation of Urban MObility) is an example of a tool for simulating traffic flow, 

including individual vehicle behavior and interactions at a large scale. The PedSim library simulates 

pedestrian dynamics and behavior, which is crucial for testing autonomous vehicles in urban 

environments. 

 Map models: High-definition maps provide accurate information on factors such as road geometry, traffic 

sign placement, and traffic topology. Their primary task is to ensure that map information can be 

transferred to and be recognized by AVs so that these vehicles can plan routes like humans. 

Examples: Many high-definition map formats are available, with the main ones being Autoware Vector 

Map, OpenDRIVE, Lanelet2, and Navigation Data Standard (NDS). OpenDRIVE is mainly used for 

simulation-based applications and is available in an open-source format. 

2.2.3. BENCHMARKS AND CHALLENGES 

The following are some of the challenges facing STV2: 

 Realism: The fidelity of simulations is a crucial benchmark. High realism in simulating real-world 

conditions is essential for effective training and validation of autonomous systems. 

 Latency: Low latency is critical for real-time decision-making in autonomous driving simulations. However, 

complex models, especially those incorporating large language models (LLMs), often suffer from high 

latency, impacting the timeliness of decision-making in simulations. 

 Computational efficiency: The computational demands of high-fidelity simulations are significant. This 

includes the need for advanced hardware and optimization techniques to run simulations efficiently. 

2.2.4. FURTHER DEVELOPMENT AND BEYOND 

The integration of various simulation components into a cohesive and realistic system remains a significant 

challenge. Specifically, the scalability of simulations to encompass a broad spectrum of real-world scenarios and 

their ability to generalize to new, unseen situations presents ongoing difficulties. Another bottleneck is the 

availability and quality of data; accessing diverse, high-quality datasets is essential for creating realistic simulation 
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scenarios but remains limited. Accurately modeling human behavior in simulations is particularly challenging due 

to the unpredictability and diversity of human actions in driving scenarios. Looking to the future, efforts are 

needed to enhance the realism of simulations, especially in complex scenarios. Finally, there is a push to develop 

more efficient simulation algorithms and hardware optimizations to reduce latency and computational demands. 

2.2.5. EVALUATIONS 

Verification and validation (V&V) processes typically focus on ensuring that the system correctly implements 

specified functions (verification) and that it meets the initial design requirements and regulations (validation). 

Beyond V&V, evaluating AD systems involves assessing how these systems perform in real-world or realistic 

virtual environments from the perspectives of users, regulators, and other stakeholders, by considering a 

broader range of factors, such as safety, usability, efficiency, and regulatory compliance. The evaluation metrics 

and scenarios used can vary widely based on specific goals, but generally, they aim to ensure that AD systems 

can operate safely and effectively in the environments and situations they will encounter.  

From different perspectives, users prioritize usability, comfort, and trust, using metrics like satisfaction and 

safety. Regulators focus on compliance with safety standards, assessing performance through indicators like 

disengagement rates. Stakeholders such as insurers and manufacturers consider system reliability, its effect on 

traffic, and environmental impacts. Specifically, the available metrics are as follows:   

 Safety metrics: Number of disengagements, incident/accident rates per miles driven, and reaction time 

to unforeseen events 

 Performance metrics: System efficiency (e.g., fuel consumption, traffic throughput), accuracy in 

following routes, and handling complex driving scenarios 

 Perception metrics: Object detection recall and precision, tracking accuracy, localization accuracy 

 User experience metrics: Comfort measures (such as smoothness of acceleration and braking), system 

responsiveness, and ease of control or interaction 

 Reliability metrics: Mean time between failures (MTBF), software stability, and sensor accuracy under 

various conditions 

Different evaluation scenarios are used to test AD systems under controlled but realistic conditions, either 

virtually in simulations or in real-world environments designed to mimic typical or extreme driving situations. 
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 Urban driving: Involves complex interactions with pedestrians, cyclists, and other vehicles. Focuses on 

navigating urban streets, intersections, and compliance with traffic laws. 

 Highway driving: Tests the system’s ability to merge, change lanes, maintain safe distances, and react 

to high-speed scenarios. 

 Adverse conditions: Includes scenarios with poor weather (rain, snow, fog), challenging lighting (glare, 

nighttime), and degraded road conditions to evaluate sensor performance and system robustness. 

 Emergency situations: Simulates unexpected events such as sudden stops, evasive maneuvers to avoid 

obstacles, and system responses to equipment failures. 

In summary, the evaluation of AD systems from any perspective necessitates a mix of simulation-based testing 

and real-world trials to guarantee their safety, reliability, and readiness for broad adoption. 

2.2.6. SIMULATION LEVELS 

Using different levels of virtual validation across various platforms and vehicles is a crucial aspect of the 

development lifecycle. These virtual validation techniques allow developers to thoroughly test and refine their 

systems at different stages of development, minimizing costs and maximizing efficiency and safety. Here’s how 

they are typically used across different development phases: 

Model-in-the-loop (MiL): During the early concept and design phase, MiL simulations are utilized to validate the 

system’s conceptual integrity and functional behavior. These simulations are typically run on high-performance 

computing platforms, where the emphasis is on algorithm validation and system modeling rather than hardware 

interaction. 

Software-in-the-loop (SiL): As the project moves into the software development phase, SiL simulations become 

more prevalent. These are executed on general-purpose computing environments such as X86 platforms, 

allowing for the validation of software components in a virtualized environment. This phase focuses on ensuring 

that the software behaves as expected in a simulated context that abstracts away from the hardware. 

Hardware-in-the-loop (HiL): In the integration and testing phase, HiL simulations are critical. This is where the 

developed software is tested against the actual hardware, albeit in a controlled environment. Electronic Control 

Units (ECUs) and other hardware components are integrated into a test setup that simulates the vehicle’s inputs 
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and outputs. HiL tests are essential for uncovering any software-hardware interaction issues that were not 

evident during SiL testing. 

Vehicle-in-the-loop (ViL) and proving-groud-vehicle-in-the-loop (PG-ViL): ViL testing integrates the software 

and hardware within the context of the actual vehicle, allowing for real-world testing scenarios with certain 

simulated components. PG-ViL, often focusing on powertrain or specific processor-level simulations, is used for 

detailed analysis and optimization of specific system components or functions. These stages are crucial for final 

validations, ensuring that the system performs safely and efficiently in real-world conditions. 

The transition from one validation technique to another is not strictly linear; instead, it involves back-and-forth 

iterations as insights gained from later stages lead to refinements in earlier stages. Moreover, these virtual 

validation stages are increasingly integrated with continuous integration/continuous deployment (CI/CD) 

pipelines, automating the validation process. This integration helps in continuously testing and validating 

software against a suite of predefined test cases across all development phases, ensuring that new code commits 

do not break existing functionalities. Despite their extensive use, virtual validation techniques face challenges 

such as the high-fidelity simulation of physical environments, integration complexities among different 

validation stages, and the scalability of tests to cover an exhaustive range of scenarios and conditions. 

Incorporating advancements in simulation technology, such as AI, would bring a more efficient and robust 

product development lifecycle. 

2.2.7. OPERATIONS 

Incorporating STV2 processes into the autonomous driving system development cycle is crucial for iterative 

improvement and product quality optimization from a business standpoint. This approach enhances the 

feedback loop for ongoing system refinement and allows for early detection of potential issues, significantly 

cutting development costs and accelerating market readiness, thereby boosting competitive edge and customer 

satisfaction. Yet, deploying effective STV2 strategies faces significant challenges: crafting exhaustive testing 

scenarios that mimic real-world conditions, setting industry-standard protocols for uniform results, and scaling 

testing methods to keep up with fast-evolving autonomous technology. Addressing these challenges is vital for 

staying at the forefront of technological progress and maintaining a competitive market stance. 
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3. STV2 IMPLEMENTATION 
3.1. SYSTEM ARCHITECTURE 
An exemplary simulation platform tailored for STV2 is presented. The design integrates inputs from system users 

and leverages a continuous integration and delivery (CI/CD) framework to ensure seamless operation between 

the backend and frontend systems. 

The architecture is structured around a backend system that processes and manages data. At its core, the 

backend houses various assets critical to the simulation process. These include scenarios for testing, which are 

managed through a scenario editor that facilitates the creation and generalization of dynamic and traffic 

scenarios. Each scenario is evaluated to ensure it meets set criteria, supported by comprehensive model 

management that includes sensor models, dynamics models, and traffic models. Additionally, the simulation 

registry maintains all necessary simulation images, such as simulator images, dynamics simulation images, and 

sensor simulation images, ensuring resources are efficiently organized and readily accessible. 

The campaign executor manages the orchestration and execution of simulation campaigns. It encompasses the 

campaign control, which directs the overall execution flow, and the simulation task executor, which undertakes 

specific simulation tasks. Within this framework, the simulation task executor is equipped with a sim task 

monitor and a sim result evaluator to track and assess simulation progress and outcomes. The simulator 

component within this executor runs the actual simulations, employing tools such as the scenario runner, virtual 

environment sim, vehicle dynamics sim, sensor sim, and traffic sim to replicate and analyze real-world driving 

conditions. 

The unit under test (UUT) is an essential part of the simulation setup, featuring a virtual ECU (vECU), middleware, 

and a data adapter. These elements work together to mimic the vehicle’s control systems under test conditions, 

providing a realistic platform for V&V activities. 

On the frontend, the system offers an interactive user interface that allows users to configure, initiate, and 

monitor simulations. This interface provides access to various simulation settings and real-time control 

capabilities, making it a pivotal tool for researchers and engineers. 

Evaluation of the simulation outcomes is handled by the simulation evaluator, which uses a series of metrics and 

a dashboard to provide insightful and actionable feedback on the performance of the autonomous systems being 

tested. 
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To enhance the system’s realism and accuracy, the HiL reprocessing manager interfaces with an external HiL 

bench that includes a HiL reprocessing service. This setup allows for the reprocessing and integration of real-

world data into the simulation environment, further enhancing the quality of the testing procedures. Meanwhile, 

the data connector facilitates the exchange of data with an external data platform, ensuring that data flows 

seamlessly for comprehensive analysis and enhancement of the simulation processes. An example is shown in 

FIGURE 2. 

The integration of the backend and frontend through the CI/CD pipeline is a critical aspect of the architecture, 

ensuring that the system remains up to date with the latest technological advancements and operational best 

practices. This setup not only facilitates the continuous deployment of new features but also ensures that the 

platform can adapt to evolving testing requirements without disruptions. 

 

FIGURE 2 AN EXEMPLARY SIMULATION PLATFORM TAILORED FOR  
THE STV2 

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 15,2024 at 03:53:53 UTC from IEEE Xplore.  Restrictions apply. 



Copyright © 2024 IEEE. All rights reserved. 

 

25   IEEE SA  
 

3.2. MODELS 

3.2.1. SENSOR MODELS 

Sensor models are crucial components in the simulation, testing, verification and validation (V&V) of 

autonomous driving systems. These models simulate the input from real-world sensors—such as cameras, lidar, 

radar, and ultrasonic sensors—that an autonomous vehicle relies on to perceive its environment [44]. By 

accurately replicating how sensors interact with diverse environmental conditions and scenarios, sensor models 

enable developers to rigorously assess the vehicle’s decision-making algorithms without the need for extensive 

physical testing. 

The development and validation of sensor models can broadly be categorized into two approaches: model-based 

and data-driven solutions. 

Model-based solutions: These rely on predefined physics and mathematical models to simulate sensor behavior. 

Model-based sensor models use geometric and physical principles to predict how sensors will respond to 

different stimuli, considering factors like object distances, light reflection properties, and sensor noise. This 

approach is particularly effective for scenarios where the underlying physics are well-understood and can be 

accurately modeled, such as the propagation of radar waves or the reflection of light for lidar sensors.  

Data-driven solutions: These solutions leverage learning techniques to build sensor models based on vast 

datasets collected from real-world driving situations. By training models on this data, data-driven approaches 

can capture complex and subtle patterns in sensor responses that might be overlooked or too intricate to be 

effectively modeled in a physics-based framework. These models are especially useful for handling unpredictable 

environmental variables such as varying lighting conditions for cameras or complex object shapes and materials 

for lidar detection. Data-driven models adapt and evolve as they are fed more data, continually improving their 

accuracy and reliability. 

Both approaches have their merits and are often used in conjunction to capitalize on their strengths. Model-

based methods provide a high level of control and interpretability, which is crucial for debugging and refining 

sensor algorithms. Conversely, data-driven methods offer robustness and adaptability, essential for coping with 

the diverse and dynamic nature of real-world environments. In practice, a hybrid approach often yields the best 

results, combining the predictive power of physical models with the adaptive capabilities of data-driven models 
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to cover a broader spectrum of test conditions and improve the overall performance of autonomous driving 

systems. 

Challenges ahead, particularly in achieving high fidelity in simulation that mirrors complex real-world conditions, 

is the accurate simulation of sensor degradation and failures under various environmental conditions such as 

fog, heavy rain, or direct sunlight, which can drastically affect sensor performance [45]. Additionally, modeling 

the interaction of sensors with a wide range of materials and surfaces—such as different types of road surfaces 

or the varied reflectivity of vehicles and other objects—is complex and computationally demanding [46]. Several 

advanced computational techniques are enhancing the realism and accuracy of sensor models. Key among these 

are generative adversarial networks (GANs) [47], neural radiance fields (NeRF) [48], and 3D Gaussian splatting 

[49]. GANs are instrumental in creating detailed synthetic datasets that closely replicate the variability in 

environmental conditions encountered by real-world sensors, thereby aiding in the robust training and 

validation of perception algorithms. NeRF contributes significantly by generating high-fidelity 3D reconstructions 

from 2D images, providing precise visual and spatial context for optical sensors such as cameras and lidar, which 

is crucial for simulating realistic driving scenarios. Additionally, 3D Gaussian splatting effectively processes point 

cloud data from lidar sensors, offering smoother and more continuous environmental representations that 

enhance the accuracy of sensor inputs. These improvements are pivotal for advancing the safety and efficacy of 

autonomous vehicles in diverse operating conditions. 

3.2.2. VEHICLE DYNAMICS 

The simulation of vehicle dynamics is integral for predicting the behavior of a self-driving vehicle under various 

operational scenarios [50]. An accurate vehicle dynamics model captures complex interactions across multiple 

subsystems including the chassis, suspension, tires, brakes, and powertrain. This model needs to consider the 

physical properties such as mass distribution, center of gravity, and inertia, as these parameters critically 

influence the vehicle’s handling and stability. 

Tire dynamics are crucial because tires are the primary contact points with the road, affecting traction, slip, and 

wear. Models like the Magic Formula or Fiala models are employed to articulate the intricate dynamics between 

the tire and varying road surfaces under different weather conditions [51]. The suspension system’s accurate 

portrayal ensures the vehicle’s response to road irregularities and dynamics during maneuvers such as cornering, 

accelerating, or braking is realistic, influencing ride quality and handling dynamics [52]. Aerodynamic forces 

become significant at higher speeds, impacting fuel efficiency, stability, and cabin noise levels, necessitating 
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detailed aerodynamic modeling [53]. The drivetrain and powertrain dynamics [54], encompassing the engine, 

transmission, differential, and driveline, are also critical, especially in hybrid and electric vehicles where 

interactions between electric motors, batteries, and traditional engines need meticulous integration. Moreover, 

the simulation incorporates advanced control systems such as traction control, electronic stability control, and 

adaptive cruise control, which require precise calibration to function correctly under diverse conditions. 

Techniques such as software-in-the-loop (SIL) and hardware-in-the-loop (HIL) simulations [55] are crucial for 

testing the vehicle’s electronic systems and software algorithms in a virtual environment, thus minimizing the 

reliance on physical testing, and enhancing the overall safety and reliability of the autonomous systems. 

3.2.3. MULTI-AGENT INTERACTIONS 

Multi-agent interaction systems work better in autonomous driving because they enable effective coordination 

and collaboration between agents, which is crucial in complex traffic environments [56]. Multi-agent 

reinforcement learning (MARL) is a powerful method used in multi-agent systems as it considers the interaction 

between agents and allows for decentralized training, making it highly scalable [57]. Recently, MARL has been 

greatly advanced and successfully applied to a variety of complex multi-agent systems such as games [58], traffic 

light control [59], and fleet management [60]. The MARL algorithms have also been applied to autonomous 

driving [61], with the objective of accomplishing autonomous driving tasks cooperatively.  

In multi-agent interaction systems involving multiple agents (e.g., AVs,), the agent’s actions affect not only their 

own rewards but also the rewards of other agents [62]. 

In contrast to single-agent reinforcement learning (RL), multi-agent RL assumes the existence of more than one 

agent interacting within a shared environment. MARL problems are formalized using Markov games [64], an 

extension of MDP (Markov Decision Process) to multiple agents. In general, a Markov game (MG) is a tuple: 

(𝒩𝒩,𝒮𝒮, {𝒜𝒜𝑖𝑖}𝑖𝑖∈𝒩𝒩 ,𝒫𝒫, {ℝ𝑖𝑖}𝑖𝑖∈𝒩𝒩 , 𝛾𝛾) 

where  

𝒩𝒩  is the number of agents 

𝒮𝒮  is the state space consisting of the states observed by all the agents  

{𝒜𝒜𝑖𝑖}  is the action space of the ith agent such that 𝒜𝒜 = 𝒜𝒜1 × ⋯× 𝒜𝒜𝑁𝑁 is the joint action space of all the 

agents 
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𝒫𝒫  represents a transition probability function for each state, which can be either known or unknown for 

a given problem 

ℝ𝑖𝑖   is the reward function, which is a scalar value obtained by the ith agent on making a state transition  

𝛾𝛾  is the discount factor such that γ ∈ [ 0,1)  

The goal is to maximize the discounted sum of rewards over a given episode. 

A MARL problem can be defined as belonging to one of the following three scenarios depending on the nature 

of interaction among the agents: cooperative, competitive, and mixed. In a fully cooperative scenario, the agents 

are expected to collaborate with each other to solve a common task and aim to maximize a common return 

jointly for all the agents. In a fully competitive scenario, the agents compete in a zero-sum game, where only 

one agent may emerge victorious; therefore, the agents are expected to maximize their individual rewards while 

trying to minimize other agents’ rewards. Some examples of competitive scenarios are car racing, blackjack, 

chess, etc. In a mixed scenario, the aim is to maintain a balance between collaborating and competing. Some 

examples are soccer, basketball, and other team games. 

It is essential to note that CAVs in real-world settings inherently assume a cooperative scenario where each 

vehicle is expected to cooperate while maximizing its rewards. Multi-agent interaction simulation can simulate 

autonomous vehicles in fully interactive scenarios with a variable number of intelligent agents, which can 

accelerate the training and testing of autonomous driving algorithms [63]. 

3.3. EVALUATIONS 
Evaluating the performance of a self-driving vehicle like the STV2 requires a comprehensive and multifaceted 

approach to ensure it meets the necessary safety standards and operational efficacy within its operational design 

domain (ODD). Here are some key aspects and methodologies that could be integral to the evaluation process: 

 ODD-specific evaluation criteria: It is essential to define the specific conditions under which the STV2 is 

expected to operate, including geographic locations, types of roads, weather conditions, and times of 

day. Evaluations should test the vehicle’s performance against these conditions to ensure it handles its 

designated ODD effectively. This involves creating scenarios that simulate these conditions, such as 

navigating urban environments with high pedestrian traffic or driving in adverse weather conditions like 

fog or heavy rain. 
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 Custom evaluation templates: Developing custom templates or protocols that guide the testing process 

can help standardize evaluations. These templates would outline specific tests for different aspects of 

the vehicle’s operation, such as response to emergency situations, interaction with various road users, 

compliance with speed limits, and maneuvering through complex traffic situations. Each template would 

be tailored to test functionalities and ensure they meet predefined benchmarks. 

 Traffic rules and regulations compliance: The vehicle must adhere to all traffic laws and regulations 

within its operating region. This involves testing the vehicle’s ability to recognize and appropriately 

respond to road signs, traffic signals, road markings, and give-way rules. Simulations and closed-circuit 

road tests can be used to assess compliance and the vehicle’s decision-making in scenarios where traffic 

rules must be interpreted under different conditions. 

 Scenario-based testing: Creating specific driving scenarios to test the vehicle’s responses in both 

common and rare situations. This could involve scenarios like sudden stops, unexpected obstacles on 

the road, or navigation on poorly marked roads. The aim is to ensure the vehicle can handle unexpected 

situations safely and efficiently. 

 Software and cybersecurity assessments: Ensuring the software that controls the vehicle is robust 

against failures and cyber threats. This involves regular updates and patches, as well as rigorous testing 

of the software’s response to simulated attacks and system failures. 

 Sensor and component testing: Regular testing of the vehicle’s sensors and other critical components 

to ensure they function correctly under various conditions. This includes lidar, radar, cameras, and 

ultrasonic sensors, which must accurately detect and interpret the vehicle’s surroundings and any 

potential hazards. 

 User experience feedback: Incorporating feedback from operators or passengers within the STV2 can 

provide insights into the real-world experience of interacting with the vehicle’s systems. This includes 

ease of use, comfort, trust in the vehicle’s driving decisions, and overall satisfaction. 

 Compliance with international standards: Finally, ensuring that the STV2 meets international safety and 

performance standards, such as those set by the IEEE, ISO, SAE, and local transportation authorities, can 

help gain regulatory approval and public trust. 
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By addressing the above aspects in the evaluation process, developers can ensure that the STV2 is not only 

compliant with all necessary regulations but also safe and reliable in its intended operational environments. 

 

4. TECHNOLOGIES AND TREND 

4.1. VIRTUALIZATIONS 

4.1.1. GENERAL 

Virtualization technologies have increasingly become more critical in developing autonomous driving systems. 

Recent advancements have propelled virtualization from a supportive role to a central strategy in STV2 processes. 

Highlighted below are key examples that illustrate the critical role. 

4.1.2. NAVIGATING URBAN COMPLEXITY: THE ROLE OF 
CARLA 

At the forefront of this technological evolution is CARLA, an open-source simulation tool that offers a 

sophisticated platform for testing autonomous vehicles in complex, dynamic urban environments. By simulating 

detailed scenarios—from sudden weather changes to erratic pedestrian movements—CARLA provides a risk-

free setting for developers to refine and validate vehicle responses to diverse real-world challenges. The 

enhanced version, Synkrotron OASIS, builds on this foundation with a more comprehensive suite of tools, 

including advanced scenario editing, improved sensor models, and capabilities for connecting to various 

hardware for real-time simulations. Additionally, it facilitates large-scale simulations in the cloud, providing tools 

that support expansive and complex testing environments. 

4.1.3. CLOUD COMPUTING: AWS ROBOMAKER’S SCALABLE 
SOLUTIONS 

AWS RoboMaker exemplifies the transformative impact of cloud computing in autonomous vehicle development. 

By facilitating the simulation of vast fleets of virtual vehicles across an array of environments, AWS RoboMaker 

enables parallel testing that drastically compresses development schedules. This scalable platform supports the 

iterative refinement of autonomous systems, ensuring comprehensive testing is both feasible and efficient. 
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4.1.4. PIONEERING VIRTUAL VALIDATION: BMW IFACTORY 

BMW’s iFACTORY initiative represents the pioneering use of digital twin technology in the automotive industry. 

By creating virtual replicas of their vehicles, BMW can extensively test and optimize vehicle performance before 

physical prototypes are ever built. The iFACTORY initiative demonstrates how digital twins have become an 

integral part of developing safer, more reliable autonomous vehicles by enabling thorough pre-emptive testing 

and validation. 

4.1.5. SCENARIO GENERATION THROUGH AI: NVIDIA’S DRIVE 
SIM 

NVIDIA’s DRIVE Sim stands out for its use of AI to automatically generate a wide range of driving scenarios, 

including rare or dangerous situations that would be difficult or impossible to replicate in real-world testing. This 

capability ensures that autonomous vehicles are exposed to and can learn from an exhaustive set of challenges, 

preparing them for anything they might encounter on the road. 

These examples underscore the transformative role of virtualization technologies in developing autonomous 

driving systems. With these advanced applications, virtualization is setting new standards for how autonomous 

vehicles are brought from conception to reality. 

4.1.6. GCP CLOUD ROBOTICS CORE 

GCP Cloud Robotics Core represents a groundbreaking framework that leverages standard Kubernetes 

management tools alongside various open-source packages. At its core, it operates across four distinct layers. 

The foundational Layer 0 facilitates Kubernetes deployment on robots, ensuring efficient resource utilization 

and seamless operation. Layer 1 focuses on establishing robust connectivity and security protocols for managing 

fleets of robots, fostering reliability, and safeguarding sensitive data. Moving up to Layer 2, the framework 

enables streamlined application management, empowering developers to deploy and monitor software with 

ease. Finally, Layer 3 offers managed repositories, facilitating the storage and versioning of crucial robotics 

applications and configurations. Through these layers, GCP Cloud Robotics Core provides a comprehensive and 

scalable solution for orchestrating complex robotic systems in cloud environments. 
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4.2. SAFETY AND SECURITY IN THE ERA OF AGI 

4.2.1. ALIGNMENT 

Artificial general intelligence (AGI) systems’ decisions and actions should be congruent with human values, 

ethical standards, and societal norms. This concept is foundational to the development and deployment of AGI 

systems that are not only technologically advanced but also socially responsible and beneficial. Addressing the 

dual challenges of safety and security in AGI involves a commitment to ethical guidelines and incorporating 

findings from advanced AI safety research. Ethical guidelines provide a framework for the responsible 

development and deployment of AGI systems, emphasizing the importance of transparency, accountability, and 

alignment with human values. Meanwhile, AI safety research is an ongoing endeavor that seeks to identify and 

mitigate the potential risks associated with AGI. This field of research is crucial for developing effective strategies 

to ensure that AGI systems operate safely and predictably, even as they evolve and adapt over time. 

Specifically, ensuring safety in the context of AGI is about guaranteeing that AGI decision-making processes are 

in harmony with human ethical standards and values. This challenge is multifaceted, requiring a deep 

understanding of both the technical capabilities of AGI systems and the ethical considerations they provoke. For 

instance, an AGI-powered autonomous vehicle must navigate not just the physical roads but also complex moral 

decisions, such as those presented by theoretical dilemmas like the “trolley problem.” To address these concerns, 

the development of AGI systems necessitates the integration of ethical decision-making frameworks. These 

frameworks guide the AGI’s decisions, ensuring they result in outcomes beneficial to humans and the 

environment. This might include programming AGI systems with a hierarchy of ethical considerations or 

developing algorithms that can interpret and apply ethical principles in diverse scenarios. Moreover, safety 

research in AI must evolve to encompass the broader implications of AGI, exploring new methodologies for risk 

assessment, mitigation, and the development of robust fail-safe mechanisms. These mechanisms are designed 

to automatically limit the AGI’s capabilities or shut it down entirely in case it deviates from its intended 

operational parameters, thereby preventing harm. 

On the flip side, the security of AGI systems focuses on fortifying them against external threats, notably cyber-

attacks that could hijack these systems for malicious purposes. The sophistication of AGI systems makes them 

potent tools in the wrong hands, capable of causing unprecedented damage if compromised. To safeguard 

against such scenarios, STV2 processes must be augmented with advanced cybersecurity measures tailored to 

the unique vulnerabilities of AGI systems. This involves not only traditional cybersecurity protocols such as 
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robust encryption and intrusion detection systems, but also novel approaches designed to protect against 

attacks that exploit the specific characteristics of AGI, such as adversarial attacks on machine learning models. 

The development of secure coding practices for AGI development is another crucial step. These practices ensure 

that AGI software is designed from the ground up to be resistant to exploitation, incorporating secure design 

principles that address the unique challenges posed by AGI technology. 

4.2.2. SIMULATIONS AND GENERATIVE AI 

4.2.2.1 General 

Generative AI significantly enhances STV2 by automating test case generation, creating realistic simulation 

environments, and improving the efficiency and effectiveness of testing processes. It facilitates data-driven 

decision-making and continuous testing, helping to identify and mitigate biases, and ensuring systems are 

thoroughly evaluated and reliable before deployment. 

4.2.2.2 Large language models (LLMs)/world models 

LLMs like GPT are advancing STV2 by automating the generation of complex and nuanced test cases. For example, 

in software development, an LLM can automatically generate test scripts based on the specifications of the 

software, creating a wide range of scenarios that might include edge cases not immediately obvious to human 

testers. This capability is crucial for comprehensive testing coverage. In analysis, LLMs can process and interpret 

vast amounts of test logs, extracting meaningful insights and summarizing results efficiently, which is particularly 

beneficial for identifying subtle bugs or issues in large software projects. Moreover, LLMs facilitate realistic user 

interaction simulations, as seen in the testing of AI-driven customer service chatbots, where they generate 

conversational scenarios to test the chatbot’s responses under various conditions, thereby enhancing the 

system’s robustness and user experience. 

World models, used in the development of autonomous systems, provide dynamic simulations of the real world 

that allow for extensive testing of systems like self-driving cars. For instance, Tesla’s Autopilot development 

leverages such models to simulate driving scenarios, testing the vehicle’s responses to different road conditions, 

obstacles, and unpredictable events without the need for real-world exposure. This method significantly reduces 

the risks and costs associated with physical testing. In predictive modeling, world models can forecast the 

outcomes of systems in different environments, such as predicting the behavior of a vehicle in varying weather 

conditions, enabling preemptive adjustments to the system. Additionally, these models support data-driven 

decision-making by simulating countless scenarios, thereby aiding in the validation of complex systems where 
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different driving conditions and emergencies can be simulated and tested thoroughly. The continuous learning 

and adaptation feature of world models ensures that the simulated environments evolve with the system, 

providing an up-to-date and relevant testing framework. 

The integration of LLMs and world models into STV2 processes represents a significant advancement, delivering 

more automated, precise, and efficient testing and validation capabilities. This is essential for developing reliable 

and high-performing systems, marking a milestone in the evolution of STV2 methodologies. 

4.2.2.3 Autonomous agents 

In autonomous driving, autonomous agents are used to create realistic and challenging scenarios for testing and 

validation. For instance, in a simulated urban environment, these agents can represent different types of vehicles, 

such as buses, trucks, and cars, each with its own unique driving patterns and behaviors. They can also simulate 

erratic pedestrian movements, like suddenly crossing the road, to test the autonomous vehicle’s sensor accuracy 

and decision-making capabilities. A concrete example is the use of autonomous agents to simulate emergency 

situations, such as a child chasing a ball onto the street or a vehicle suddenly braking to avoid an obstacle. These 

scenarios test the autonomous vehicle’s ability to detect and respond to unexpected events promptly and safely. 

Another example is the simulation of complex traffic conditions, such as congested urban centers or multi-lane 

highways with merging traffic. Autonomous agents can mimic aggressive drivers who change lanes unpredictably 

or tailgate, providing a comprehensive test environment to ensure the autonomous vehicle can handle real-

world driving challenges effectively and safely. In these simulations, the autonomous agents not only behave 

according to predefined patterns but also adapt their behaviors based on the autonomous vehicle’s actions, 

creating a dynamic and interactive testing environment. 

4.2.2.4 Visual language model (VLM) 

The utilization of large language models (LLMs) is significantly enhancing the STV2 framework for autonomous 

driving. 

By integrating LLMs, the system’s comprehension of context in various driving scenarios is improved, utilizing a 

set of predefined question-answer pairs. Given that camera sensors are among the most prevalent in 

autonomous vehicles, the progression toward language integration has been facilitated by visual language 

models (VLMs). VLMs combine visual and textual data, allowing for spatial reasoning augmented by the 

capabilities of pre-trained LLMs. The system is designed to articulate its visual perceptions in natural language 

and to determine suitable actions, such as stopping at a red light. 
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Furthermore, LLMs contribute to the improvement of driving-related question-and-answer performance. For 

instance, Chen and colleagues have compiled a dataset comprising 160,000 questions. This extensive dataset is 

instrumental in developing a proprietary LLM tailored for autonomous driving applications [65].  
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