NERC

How NERC measures and tracks resilience of the BPS

Svetlana Ekisheva, Principal Data Science Advisor, NERC

IEEE DRES TF and WG TEAMS meeting September 9, 2022

- NERC as a part of the Electric Reliability Organization (ERO) Enterprise
- Extreme weather is the top cause that tests grid resilience
- Large weather events on transmission system
- Metrics to track resilience and restoration during and after extreme weather
 - Hurricane Ida (2021) as a major transmission and generation event
- How we started: Resilience events on distribution system (CDW 2021)

- The vision for the ERO Enterprise, which is comprised of the North American Electric Reliability Corporation (NERC) and the six Regional Entities, is a highly reliable and secure North American bulk power system (BPS). Our mission is to assure the effective and efficient reduction of risks to the reliability and security of the grid.
- NERC collects transmission and generation outage and inventory data in TADS and GADS

- Top days are determined by combined impact from transmission, generation, and load losses
- 2021
 - All caused by extreme weather
 - February Cold weather event (6 days)
 - Heat Dome
 - Thunderstorms
 - December tornadoes
 - Hurricane Nicholas
- 2017-2021
 - All caused by extreme weather
 - February Cold weather event (5 days)
 - Hurricanes
 - Winter storms

- Transmission owners (TO) report automatic outages in NERC TADS (Transmission Availability Data System) and outage events (TO-specific)
- To identify large transmission events that typically involve multiple utilities, we developed an algorithm* to group outages from the same interconnection

*<u>Impact of Extreme Weather on North American Transmission System Outages | IEEE</u> <u>Conference Publication | IEEE Xplore</u>

Transmission Events are Output of the Grouping Algorithm

- Events are characterized by bunching (outages in close succession) and overlapping accumulation of outages in time.
- An event with at least one outage initiated by a weather-related cause is defined as a weatherrelated event.
- Large Events: Events with 20 or more outages

Examples of Transmission Events Extracted from TADS

Large Weather-Related Transmission

Created: March 4, 2021

- 70 large events for 2016-2021
- 69 are weather related!

Data Source: 5 km Gridded Dataset (nClimGrid)

Outage, Restore, and Performance Curves for an Event

- Outage process O(t) counts the cumulative number of outages by time t
- Restore process R(t) counts the cumulative number of restores by time t
- Performance process P(t)=R(t)-O(t) is the negative number of outaged elements at time t
- The three curves are used to calculated several metrics that quantify resilience of the system against this event.

Outage, Restore, and Performance Curves for an Event

- Outage process O(t) counts the cumulative number of outages by time t
- Restore process R(t) counts the cumulative number of restores by time t
- Performance process P(t)=R(t)-O(t) is the negative number of outaged elements at time t
- The three curves are used to calculated several metrics that quantify resilience of the system against this event.

Attributes/Abilities of Resilient Power System and Resilience Metrics

Attributes

- Anticipate and plan
- Absorb and withstand
- Adapt and protect against
- Recover and reduce the duration/magnitude

Metrics

- Event Size (Outages or MVA)
- Outage process duration
- Outage rate
- Time to first restore
- Most degraded state (Max Simultaneous outages)
- Total element-days (MVA-days) lost
- Restore rate
- Event duration
- Time to critical restoration level (95% of elements or 95% of MVA)

Hurricane Ida: Largest Transmission Event of 2021

- Outage process: 13 hours; 17 outages per hour or ~7,700 MVA per hour
- 225 automatic outages: 4 transformer outages and 221 ac circuit outages (12 TOs)
- Most degraded state (171 elements and 78,000+ MVA out), stayed there 1 minute
- Time to first restore 47 minutes
- Total losses: 1300 element-days and 641,500 MVA-days
- Total event duration 124 days; 95% outages and MVA restored after 19 days (15% of total duration)

Hurricane Ida: Large Generation Event of 2021

- 73 conventional generation units
- Most degraded state (49 units and 10,000 MW out), stayed there 19 minutes
- Time to first restore 9.5 hours
- Total event duration 44 days; 95% outages restored after 33 days (97% of total duration)

Statistics for Resilience Metrics for Large Weather Events on Transmission System

Process	Resilience Metrics	Mean	Std Dev	Median
Outage process	Event size (# outages)	45	50	27
	# generations	31	37	21
	Miles affected	1175	1173	850
	MVA affected	17165	18514	10769
	TADS elem affected	39	43	25
	Outage process duration Hrs	6	5	5
	Outage rate (elem/Hr)	7	4	6
	Outage rate (MVA/Hr)	3008	2765	2220
Restore process	Restore Process Duration Days	14.5	33.1	4.6
	Time to First Restore Minutes	46	51	31
	Time to restore 95% outages Days	3.9	5.4	2.3
	Time to restore 95% MVA Days	4.2	6.3	2.2
	% Event Duration to Restore 95% outages	58%	31%	63%
	% Event Duration to Restore 95% MVA	58%	33%	61%
Performance process	EventDuration Days	14.6	33.1	4.6
	Max Elemements Out	27	28	17
	Max MVA Out	9724	10721	6283
	Element-Days Lost	59	104	18.7
	MVA-Days Lost	21394	39499	5535

- <u>Report (nerc.com</u>) NERC 2022 State of Reliability, An Assessment of 2021 Bulk Power System Performance
- Impact of Extreme Weather on North American Transmission System Outages | IEEE Conference Publication | IEEE Xplore
- <u>Assessing Transmission Resilience during Extreme Weather with Outage and Restore</u>
 <u>Processes | IEEE Conference Publication | IEEE Xplore</u>
- <u>Resilience Framework, Methods, and Metrics for the Electricity Sector (TR83) (ieee-pes.org)</u>
- <u>Report (nerc.com</u>) NERC's Reliability Issues Steering Committee Report on Resilience
- N.K. Carrington I. Dobson, Z. Wang, Extracting resilience metrics from <u>distribution</u> <u>utility data</u> using outage and restore process statistics, IEEE Transactions on Power Systems, vol. 36, no. 2, November 2021, pp. 5814-5823.
 <u>https://iandobson.ece.iastate.edu/PAPERS/carringtonPS21.pdf</u>

- Distribution outages reported by one distribution utility
- Each outage records start and finish times to the nearest minute and number of customers out
- **Resilience curve C(t)**: negative of cumulative number of outages (or number of customers) as a function of time t.
- An event is the resilience curve dropping below zero and then returning to zero as outages occur and are restored.

Distribution Resilience Events (Ian Dobson et al. 2021)

Questions and Answers

