

Wideband Synthetic Aperture Test Bed for Intelligent Reflecting Surfaces

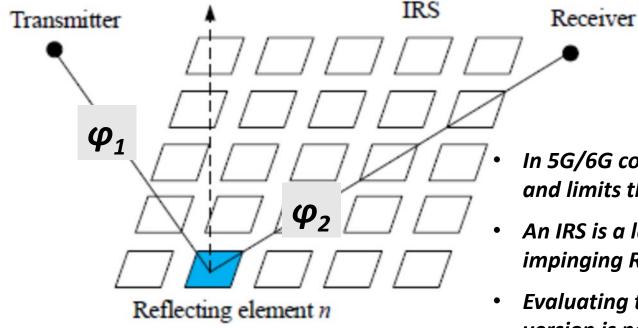
Peter Vouras, Mohamed Kashef (Hany), Sudantha Perera, Carnot Nogueira, Richard Candell, Kate A. Remley

National Institute of Standards and Technology (NIST)

Overview

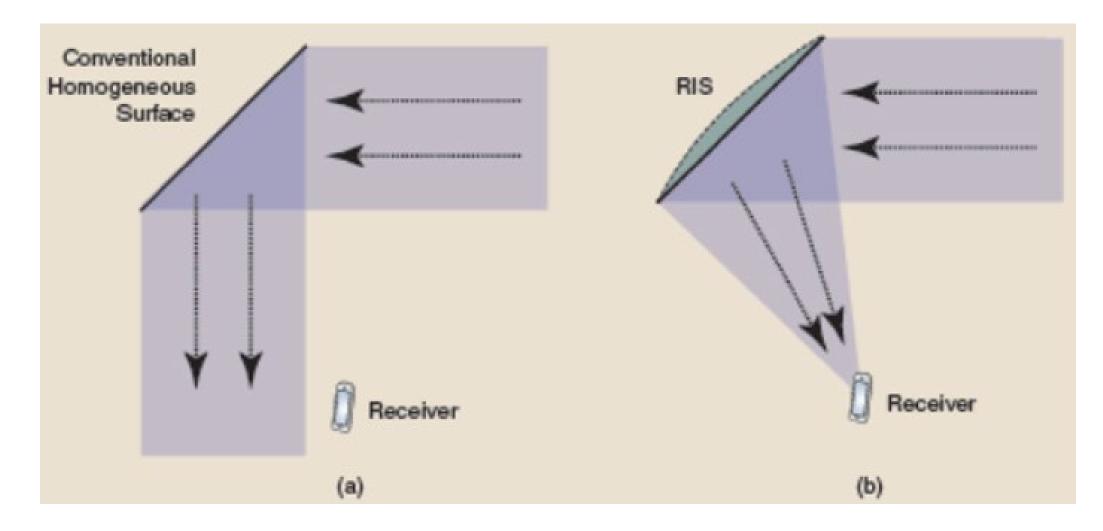
- Intelligent Reflecting Surfaces
- Synthetic Apertures
- Planar Wavefronts
- Spherical Wavefronts
- Spherical Beamforming
- Simulation Results
- Measured Results
- Conclusion

Signal ntelligent Reflecting Surface



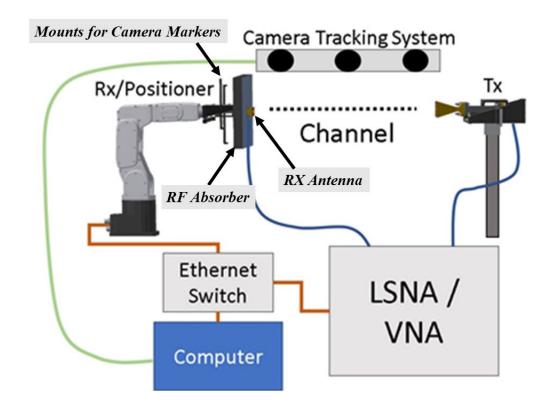
- In 5G/6G communications above 28 GHz, path loss is a severe challenge and limits the range of wireless links
- An IRS is a large passive surface with discrete elements that can reflect impinging RF signals after imparting a phase shift from φ_1 to φ_2
- Evaluating the performance of an IRS is difficult since a manufactured version is not always available for testing
- A synthetic aperture however can serve as a proxy for the IRS and provide measurements of the phase of impinging signals in realistic multipath environments

Sample Use Case



Synthetic Aperture



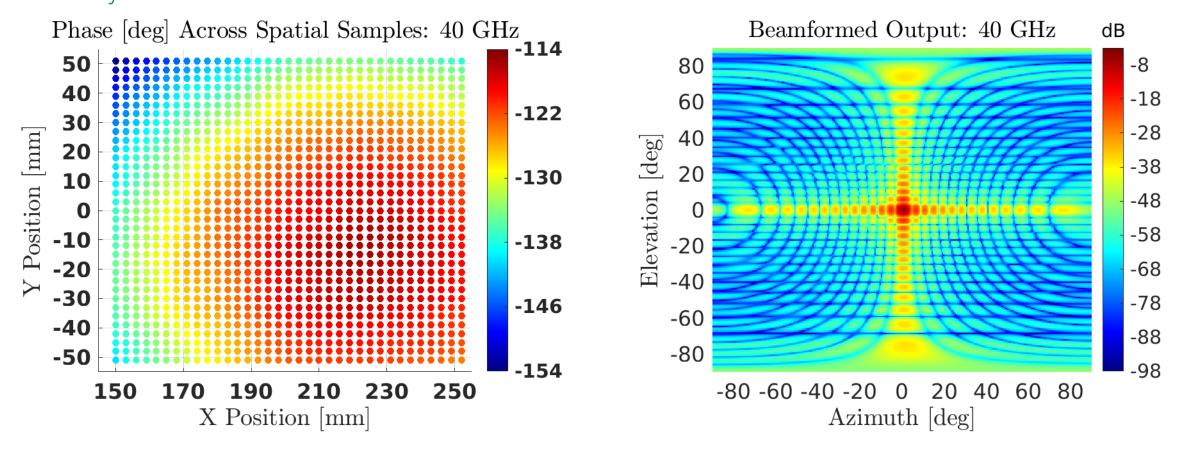


- A synthetic aperture is created by using a robot to move an antenna through space
- The antenna samples the propagating electric fields at discrete points along a sampling lattice
- If the measurements are phase coherent, they can be combined in post-processing to create high resolution images of the scattering environment

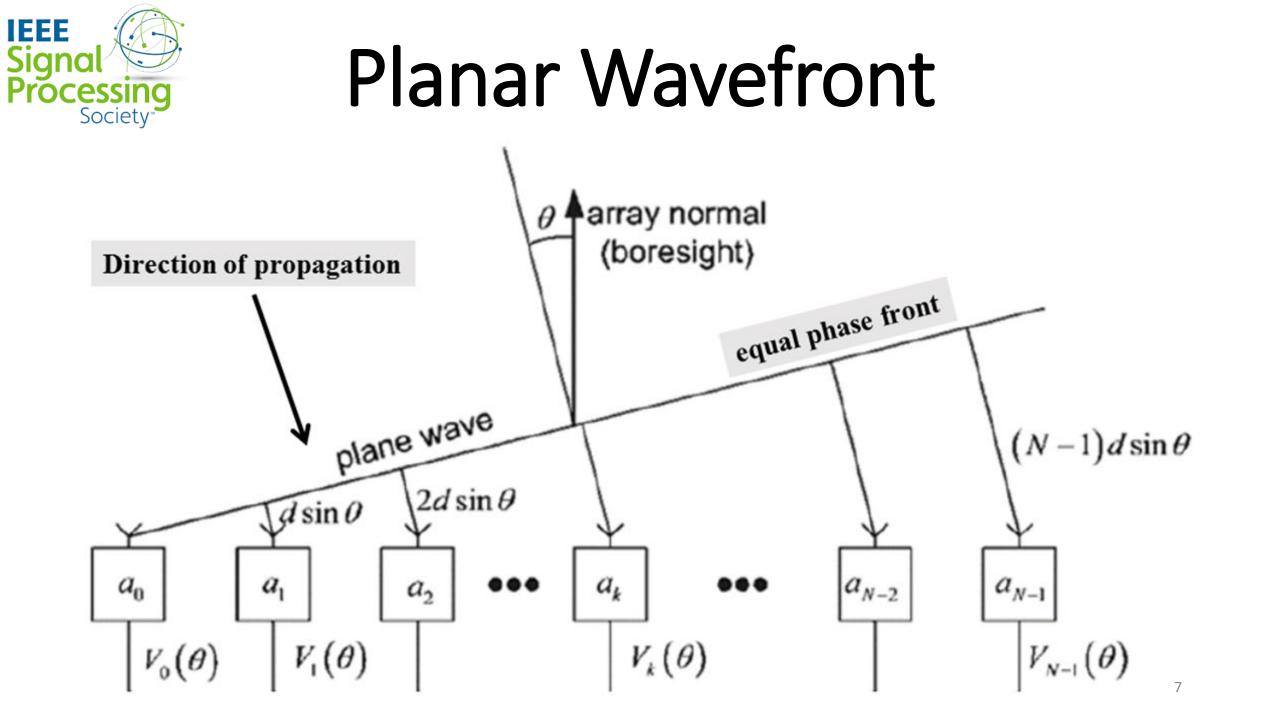
Point Spread Function

IEEE

Society



- Plot on left depicts phase of a sinusoidal signal at 40 GHz measured along a 35-by-35 planar grid
- Plot on right illustrates the point spread function of a 35-by-35 synthetic aperture measured using a point scatterer (aluminum cylinder) at boresight

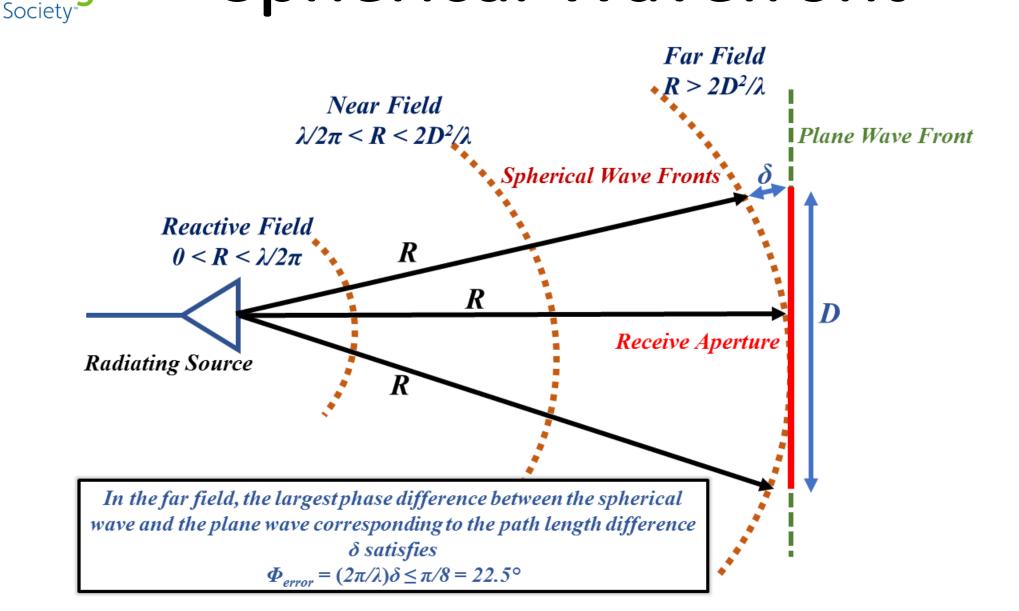


Spherical Wavefront

IEEE

Signa

Proces



Spherical Beamforming

• The field of a propagating monochromatic plane wave as a function of space **x** and time *t* is given by

$$U(\mathbf{x},t) = e^{j2\pi(-\mathbf{v}^T\mathbf{x}+ft)}$$

- Here, v is spatial frequency along the propagation direction and f is temporal frequency
- Spherical beamforming accounts for the curvature of the phase front by computing steering vectors with distance-dependent phase according to

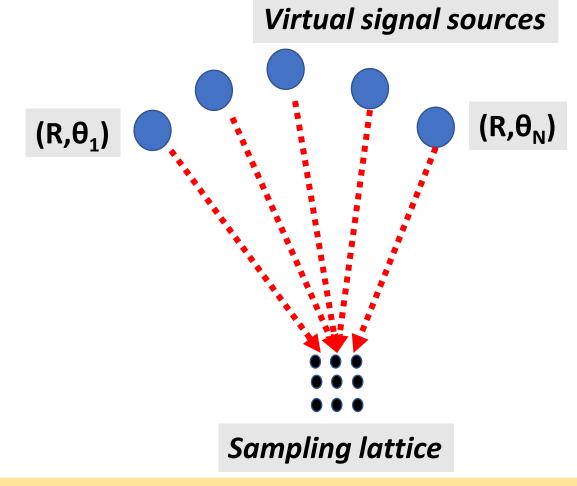
$$V(\mathbf{x},t) = e^{-j\frac{2\pi}{\lambda}d(\mathbf{x})}e^{j2\pi ft}$$

- Here, $d(\mathbf{x})$ is the distance between the signal source and the receive location \mathbf{x}
- Each steering vector can be interpreted as a matched filter that maximizes the signal power received from a given angle of arrival and delay

3D Imaging

Algorithm 2 Spherical Phasefront PADP and Delay Slice Creation

- **Input:** Array output vector $\mathbf{y}(\omega_k)$ at each frequency ω_k for k = 0, ..., S 1 and desired beam pointing direction (Az_0, El_0) corresponding to (u_0, v_0) .
- Starting from an initial range R₀ and proceeding to a final range R₁ in increments of ∆R, compute the Cartesian coordinates (x_k, y_k, z_k) corresponding to the spherical coordinates (R_k, u₀, v₀).
- Compute the distance from (x_k, y_k, z_k) to each spatial sample in the synthetic aperture.
- 3: Compute the spherical steering vector, w(ω_k; u₀, v₀, R_k), for each frequency. Each component of the spherical steering vector corresponds to the propagation phase e^{jkDmn} where k = 2π/λ. Here (m, n) denotes the indices of each spatial sample in the synthetic aperture and D_{mn} = √(x_k x_m)² + (y_k y_n)² + (z_k z)².
- 4: Stack all the frequency-dependent steering vectors into $\widehat{\mathbf{w}}(\omega; u_0, v_0, R_k)^{\hat{H}}$ and all the array vectors into $\widehat{\mathbf{y}}(\omega)$. Then output beamform the wideband array output by forming the dot product $b(u_0, v_0, R_k) = \widehat{\mathbf{w}}(\omega; u_0, v_0, R_k)^H \widehat{\mathbf{y}}(\omega)$
- Repeat steps 1 through 4 for all angles on a discrete grid at a fixed range R_k to create a delay slice x(u, v; R_k).



For each frequency, components of steering vector are range and angle dependent

Society Ventional Wideband Beamforming

Algorithm 1 PADP and Delay Slice Creation

Input: Array output vector $\mathbf{y}(\omega_k)$ at each frequency ω_k for k = 0, ..., S - 1 and desired beam pointing direction (u_0, v_0)

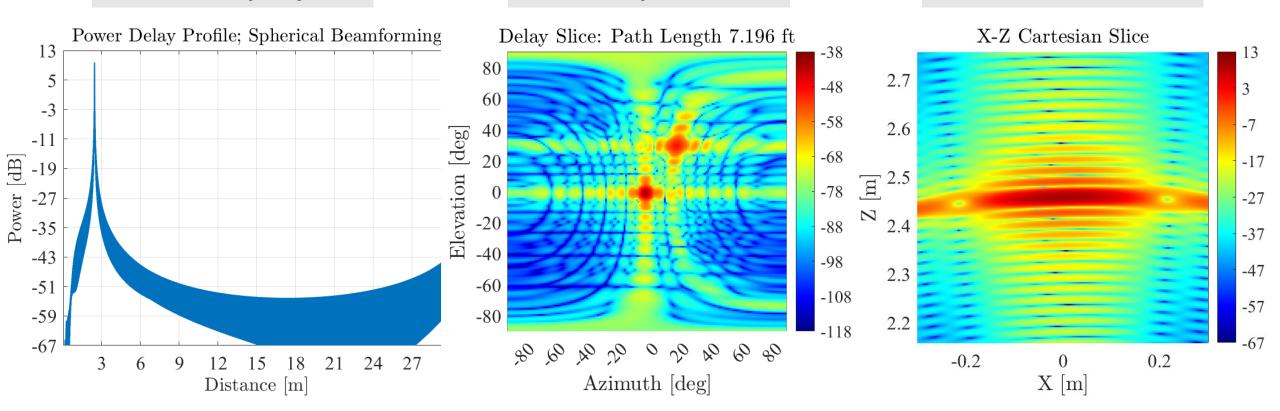
- Compute the phase steering vector for each frequency, w(ω_k; u₀, v₀).
- Beamform the array output vector y(ω_k) at each frequency by forming the dot product b(ω_k; u₀, v₀) = w(ω_k; u₀, v₀)^Hy(ω_k)
- 3: Compute the Inverse Fourier Transform (temporal) to obtain the beam output (directional PDP), $x(\tau_k; u_0, v_0) = IFT[b(\omega_k; u_0, v_0)]$
- 4: To reduce high-frequency, time-domain ripple in wide bandwidth measurements and to increase sampling resolution, compute a window function c_k of length S with low sidelobes, e.g. Hamming window. Then zero-pad the sequence c_kb(ω_k; u₀, v₀) to L times its original length before computing the IDFT
- 5: For a fixed delay, $\tau = \tau_0$, $x(\tau_0; u, v)$ is the spatial frequency spectrum of all signal sources impinging on the array (also called a delay slice) and can be used to estimate angles of arrival

Outputs: PDP $x(\tau; u_0, v_0)$ in the fixed direction (u_0, v_0) . Delay slice $x(\tau_0; u, v)$ at the fixed delay τ_0 . In conventional wideband beamforming, the steering vectors are angle and frequency dependent but range and delay invariant

Simulation Results

Delay Slice

Power Delay Profile



Cartesian X-Z Slice

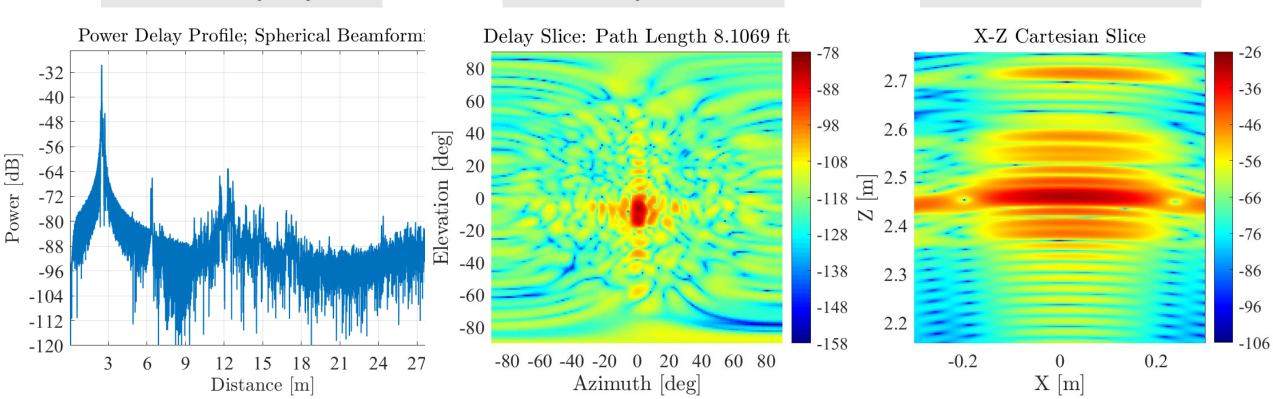
Measurement Scenario

Two aluminum cylinders were measured on an optical table using a 35-by-35 synthetic aperture

Measurement Results

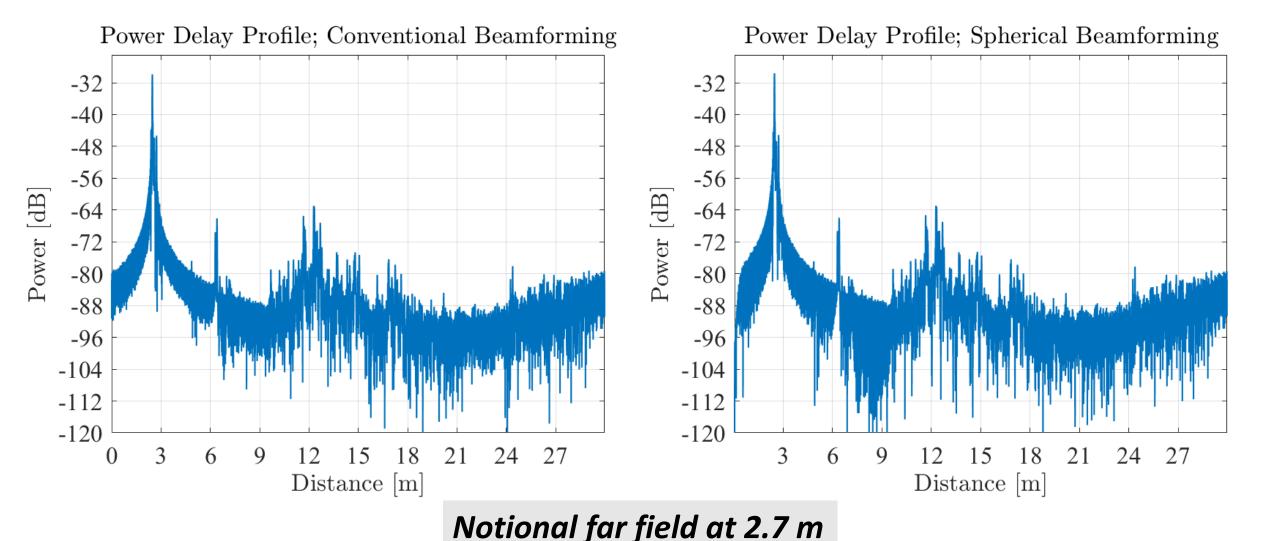
Delay Slice

Power Delay Profile



Cartesian X-Z Slice

Signal Conventional vs Spherical PDPs



Conclusions

- In hardware implementations of beamforming, the phase front of impinging waves is assumed planar, consistent with far-field propagation
- In many metrology applications however, the spherical curvature of the phase front should be accounted for to provide most accurate results
- Spherical steering vectors account for the distance-dependent phase of incoming radiation
- Spherical beamforming is especially useful for evaluating the performance of Intelligent Reflecting Surfaces that operate in a mix of far-field and near-field conditions
- A synthetic aperture can measure the phase of an arriving signal as each element of an IRS sees it, and in realistic wireless channels with multipath