Method
 for quantifying image quality in push-broom hyperspectral cameras

Gudrun Høye, Trond Løke, Andrei Fridman

Camera layout

neo

Keystone

neo

Keystone

neo

PSF variations

Keystone + PSF variations

Sharpness

neo

Sharpness

Quantifying performance: how much of the energy ends up in the correct pixel

Right edge
neo

Quantifying performance: how much of the energy ends up in the correct pixel

- Sharpness
- Maximum misregistration
- Standard deviation of misregistration

Lab setup

SWIR camera prototype

- 384 spatial pixels
- 16 degrees field of view
- 288 spectral channels
- 900 nm - 2500 nm spectral range
- F2.0 optics

Results

HySpex SWIR 384 prototype camera

Production-standard HySpex SWIR 384 camera

neo

The same approach can be used for measuring:

- Spectral misregistration and sharpness
- Spatial misregistration and sharpness in the along track direction (or other directions)

Conclusions

- The method uses the most basic object (a point source) for testing.
- The method is easy to implement and the measurements don't take too much time.
- User friendly
- Easy to understand
- Fast and easy to compare cameras
- The method is used on the final datacube

More information about the method

An open access paper in Optical Engineering:
"Method for quantifying image quality in push-broom hyperspectral cameras"

Gudrun Høye, Trond Løke, Andrei Fridman

https://doi.org/10.1117/1.0E.54.5.053102
fridman@neo.no
Thank you!

