Synthetic Aperture Radiometry Kick-Off

IEEE Synthetic Aperture Radiometry Study Group July 20, 2022

Overview (1 of 4)

- Applications for Synthetic Aperture Radiometry
 - Early detection of fire
 - $\,\circ\,$ Forest surveillance
 - $\,\circ\,$ Imminent eruptions
 - Monitoring distribution and dynamics of ice
 - Monitoring of agricultural output
 - Heliospheric impacts on Earth's weather
 - Exploring potential biospheres of icy moons
 - Investigating causes for differences in evolution between Earth & Venus

Overview (2 of 4)

- Radiometers measure thermal noise within a limited bandwidth about some frequency of interest.
 - Water Vapor Radiometers (WVR) operating at 22 GHz
 - Zeeman radiometer operating at 183.75 GHz
- Thermal (black-body) noise conforms to Planck spectrum
 - Noise energy is quantized and noise samples are perfectly uncorrelated
 - Bandwidth is sufficiently narrow that noise energy = kT; k = Boltzmann's constant
- Thermal noise generated by the radiometer itself may be many times greater than its sensitivity ($T_{sys} \sim 500$ K, Sensitivity, $\Delta T \sim 1$ K)
 - Sensitivity determined by the time-bandwidth product of the noise output

Overview (3 of 4)

- Digitization of noise samples offers performance advantages
 - Superior suppression of image noise
 - Superior rejection of multiplicative noise
 - Superior cross-polarization rejection
- Quantization of noise samples has mitigatable disadvantages*
 - Amplitude quantization contaminates samples (B. Widrow)
 - Temporally-quantized samples are NOT perfectly uncorrelated (C. Bretherton)
 - Spectroscopic radiometry aggravated by temporal quantization
- * One possible topic for proposed study

Overview (4 of 4)

- Challenges for Synthetic Aperture Radiometry Standard
 - Requirements that aperture synthesis imposes on individual radiometer elements
 - Morphology of array
 - \circ Dense (redundant)
 - \odot Thinned (non-redundant)
 - Array calibration (Polarization, Spectrometry, Spatial & Thermal resolution)
 - Optimum processing strategies (sequences) for aperture synthesis
 - $\ensuremath{\circ}$ Application dependencies
 - Handling platform (& scene?) motion
 - Terminology clean-up?

Proposed Study Plan - 1

- Survey of literature (example set of references)
 - Niels Skou, David Le Vine "Microwave Radiometer Systems: Design & Analysis," Artech House 2006. Chapter 8 introduces synthetic aperture radiometry.
 - A. Camps "Tutorial on Synthetic Aperture Radiometry: Application to SMOS mission" IGARSS 2006. Extensive discussion of calibration from a moving space platform.
 - C. Ruf, C. Swift, A. Tanner, and D. Le Vine, "Interferometric Synthetic Aperture Microwave Radiometry for the Remote Sensing of the Earth," IEEE Trans. Geo Rem. Sensing, 26, 5, pp 597-611, Sep. 1988. Terminology clean-up?
 - B. Laursen, N. Skou, "Synthetic Aperture Radiometry Evaluated by a Two-Channel Demonstration Model," IEEE Trans. Geo Rem. Sensing, 36, 3, pp 822-832, May 1998.

Proposed Study Plan - 2

- Draw from experiences from ESA's ESTEP & SMOS programs
- Invite practices & experiences from study group membership
- Invite synthetic aperture radiometry topics other than those listed on "Overview (3 of 4)" and "Overview (4 of 4)"

Proposed Study Plan - 3

- Develop a selection process to converge on candidates that produce a standard with the highest impact.
- Eliminate approaches that exceed the time line of standards development.

Questions?

Discussion