Synchronization of Radiometers on Spatially-Separated Platforms

H. Brian Sequeira

Spatial Separation Context

- Distance and/or motion of platforms sufficiently disparate that tethered connection between them is not feasible, e.g.,
 - Formation of aircraft
 - Constellation of spacecraft

Need for Synchronization

- Recommended Practices document proposes correlation among radiometers as the preferred approach
 - <u>Sampling Rates</u> must be synchronized among multiple platforms

 Lack of frequency synchronism leads to correlation loss and temporal broadening
 - <u>Times</u> must be tagged to a common standard to attribute the thermograph to its geographical location.
 - \circ Lack of time synchronism leads to smearing/blurring of the thermograph
- Both effects are linked to synchronization of on-board clocks

Components of a Clock

- The simplest concept of a clock is described in terms of two components
 - Isochronous* oscillator
 - Accumulator that counts cycles of the oscillator

* Temporal phase profile is linear

Intervals between Isochronous Events

- Time lapse between consecutive cycles of emission from an atom
 1/9,192,631,770 s for Cesium atom
- Time lapse between consecutive leading edges of a highly stable rectangular waveform generator
- Time lapse between two identical states of Kepler motion of Earth around the sun, the state being defined by $(R, \dot{R}, \ddot{R}, \phi, \dot{\phi}, \ddot{\phi})$

Impairments to Isochronism

- Oscillators in nature or man-made are approximately isochronous
 - Atoms recoil during emission (Doppler broadening), interact with other atoms, perturbed by electric fields, etc.
 - Waveform generators affected by random fluctuations in phase, or equivalently jitter in time
 - Earth's motion perturbed by presence of other bodies, and its own rotation

Isochronism is a property of a single oscillator

Synchronism

- Synchronism applies to two or more oscillators or clocks.
 - Two oscillators with phase characteristics $\varphi_i(t)$ and $\varphi_j(t)$ are synchronous if and only if $\frac{d(\varphi_i \varphi_j)}{dt} = 0$ at all times.

[Note: Oscillators i and j need not be isochronous, but the phases must track in time so that $\varphi_i(t) - \varphi_i(t) = \text{constant for all time}$]

• Two clocks are synchronous if their oscillators are synchronous AND $\varphi_i(t) - \varphi_j(t) = 0.$ Synchronous

Benefits of Isochronous Operation

- Although isochronous operation is not necessary for synchronism, it has significant benefits
 - Spectral characteristics best suited for frequency reference
 - Samples at equally-spaced instants of time compatible with analytical methods developed for that purpose (e.g., Fourier and Laplace analysis)
 - Compensations for small deviations from isochronism, e.g., slowly varying Doppler shifts more easily accomplished

Plesiochronous Systems

- Practical systems are neither perfectly isochronous nor synchronous.
 - Nominally isochronous and synchronous, e.g., oscillators in free-running state may differ in frequency by parts per million or even several parts per billion.
 - Deviations from isochronism synchronism constrained within specified bounds by proper design. Algorithms operate on sampled data to estimate deviations and correct the clocks for such deviations.
 - Common in digital communication systems where carrier-phase and symbol timing loops estimate deviations and compensate for them during the signal demodulation process.

Plesiochronous Definition

•
$$\frac{d(\varphi_{i}-\varphi_{j})}{dt} \ll \frac{d\varphi_{i}}{dt} \text{ and } \frac{d\varphi_{j}}{dt}; \frac{d(\varphi_{i}-\varphi_{j})}{dt} = k_{i}\frac{d\varphi_{i}}{dt} = k_{j}\frac{d\varphi_{j}}{dt}; k_{i}, k_{j} < 10^{-6}$$

•
$$|\varphi_{i}(t) - \varphi_{j}(t)| \leq \Delta\varphi_{B}$$

[1] S.P. Ferguson, *Tutorial: The Synchronous Digital Hierarchy*, IEE Colloquium on What's New in Telecommunications?, London, UK, January 1994

[2] G.D. Richardson, P.C. Smith, *Transmission of Synchronous Digital Hierarchy Signal by Radio*, IEEE International Conference on Communications, Atlanta, GA, USA, April 1990

[3] Atsushi Imaoka, Masami Kihara, *Time Signal Distribution in Communication Networks Based on Synchronous Digital Hierarchy*, IEEE Transactions on Communications, Vol. 45, No. 2, February 1997

Challenges for WG - General

- Standard algorithms apply to deterministic events
 - Need to adapt formulation to random (probabilistic) events
- Standard technique apply to receivers on one platform feasible to tie all operations to a single time & frequency reference
 - Multiple platforms have independent LOs and sampling clocks which need phase locking and time synchronism to a common but necessarily remote reference.
 - Pro: Phase noise is uncorrelated among LOs and suppressed by cross-correlation, and remote separation of receivers eliminates crosstalk
 - Con: Cross-correlation loss and broadening due to plesiochronous sampling mismatch in clock times and delays and gain between antennas and samplers on different platforms.

Challenges for WG – Processing Sequence

- Where and how do we apply Doppler compensation?
- Time-domain cross-correlation with plesiochronous clocks
- Frequency-domain cross-correlation with plesiochronous clocks
 - Perform FFT on each receiver output (with reference to whose clock?)
 - Convolve FFTs pairwise (what is the degradation in correlation gain due to mismatch in sampling clocks?)
 - Perform inverse FFT on convolved pair